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Abstract

The traditional approach to mass production involves maintaining a consistent volume of the same product type for an extended period, minimizing
fluctuations in parameters outlined in the process plan to ensure planned production efficiency. However, in mixed human-machine production
lines, delays in human work and machine malfunctions are common, leading to significant fluctuations in assumed parameters and decreased
throughput during the production control period. This research aims to develop technology for swiftly establishing production lines, accounting for
fluctuations such as variations in task duration in mixed human-machine production lines (proactive planning approach). To manage configurations
robustly, the approach involves pre-generating alternative configurations based on fluctuation scenarios and selecting and implementing suitable
configurations to maximize throughput within budget constraints. Additionally, a novel technology is proposed to enable production continuity
through flexible re-planning in response to operational fluctuations (reactive planning approach). The goal is to reduce the production preparation
period and maintain target throughput during operation. Validation of the introduced method is demonstrated through computational analysis
using an industrial case study simulating a battery assembly line for electric vehicles. The experiments results show throughput improvement even
with the implementation of a small number of alternative configurations. This research contributes to enhancing production line adaptability and
efficiency in the face of fluctuating operational conditions, ultimately improving overall manufacturing performance and competitiveness.
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1. Introduction

The production system configuration problem is a crucial
sub-problem of production line design [7]. It entails defining
a production system capable of producing given products in de-
sired quantity and quality in the most efficient manner possible.
Decisions to be made during system configuration include in-
vestment in new resources such as production lines, stations,
robots, tools, storage, etc., selecting the appropriate execution
mode for each production task, and assigning these tasks to sta-
tions.

In the conventional mass production method, a certain
amount of the same variety is produced for a long period of
time [6]. Therefore, the fluctuation of the parameters—target
value such as required quantity, input value such as process
capability—assumed in the production system configuration is
small enough not to affect productivity, and the production effi-
ciency as planned can be achieved. However, in the operation of
a mixed line of humans and machines, work delays by humans
and malfunctions of machines frequently occur. Consequently,
there is a problem where the fluctuation of the assumed param-
eters in the process plan becomes significant during the produc-
tion control period, leading to a decrease in throughput.

For instance, in the production line of EV battery mod-
ules operated on dedicated lines for each product, maximizing2212-8271© 2024 The Authors. Published by Elsevier B.V.
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throughput poses a significant challenge. Due to the backdrop
of high labor costs, efforts are underway to automate production
lines as much as possible using robots and dedicated machines.
However, certain processes such as parts kitting, wire harness-
ing, and final assembly remain difficult to automate, necessitat-
ing a hybrid approach involving both human and robotic labor.
Therefore, during line operation, the task duration for workers
varies due to factors such as absenteeism due to health issues,
the influx of inexperienced workers, and the allocation of tasks
beyond individuals’ specialties. Additionally, the task duration
for robots fluctuates due to retries resulting from positional er-
rors and robot failures. These variations in task durations lead
to uneven line balancing and a subsequent decrease in through-
put. To maintain productivity despite fluctuations, the produc-
tion system needs to detect these variations and actively respond
to them. This paper focuses on finding ways to appropriately
address task duration variations at the level of system configu-
ration.

In the case of flow systems, modelling production system
configuration—i.e., determining the optimal combination of
equipment and resources, in addition to their assignment to pro-
duction tasks for given process plans and demand volumes—
corresponds to different versions of the assembly line balancing
problem (see, for instance, [1, 2]). Adaptability and responsive-
ness are required more and more for future manufacturing sys-
tems [5]. A recent review of flexibility in manufacturing system
design can be found in [14]. [11] proposes an integrated frame-
work that generates multiple feasible configurations, and evalu-
ates them by simulations and multi-objective optimization. [12]
focuses on alternative plans managing resource failures. Facing
uncertainty and changes in the duration of tasks studied, e.g.,
by [3, 4, 8, 9, 10, 15].

However, determining the optimal portfolio of alternatives
that should be implemented on the shop floor in the case of
stochastic task completion times has not been investigated in
detail yet.

2. Problem statement

The focus of the paper is managing fluctuations—i.e., task
duration variations—in the configuration problem of a serial
production line, which consists of a number of either robotic
or human-operated stations, equipped with different tools.

The duration of a given task can vary significantly, e.g.,
based on the difference in the experience of the operators or
due to a potential retry of robot operation. Therefore, the bot-
tleneck process can be different depending on the combination
of task duration variations resulting in a lower throughput than
expected at the time of planning.

Addressing the task duration fluctuations by robust configu-
ration assumes the availability of necessary equipment, human
operator instruction and training, as well as control programs,
thus, the problem must be tackled in different stages. First, al-
ternative configurations must be pre-generated according to rel-
evant fluctuation scenarios. Then a reasonable portfolio of the

most appropriate configurations must be identified and imple-
mented on the shop floor.

The following types of fluctuations are assumed to be
present in the examined task durations:

• Trend variations (sustained change, improvement or deteri-
oration):

– High frequency (occurs within a shift), e.g., worker fa-
tigue;

– Medium frequency (occurs after a few shifts), for in-
stance, worker learning;

– Low frequency (its effect occurs only in the long run),
e.g., deterioration of machines and jigs.

• Cyclical (always reoccurring) variations:

– High frequency (appears in each shift), for example, the
difference in worker’s abilities in each shift;

– Low frequency (appears on a monthly basis), e.g., re-
placement of workers, maintenance of machines.

Based on that, it is important to investigate the different fluc-
tuation scenarios of the system, i.e., the collections of appropri-
ate resource-task duration pairs.

In the case of the production system configuration for the
nominal process, the tasks have to be assigned to the individ-
ual stations according to their pre-defined process plan in such
a way that the forecast demand of the product is satisfied and
the total production cost—involving the investment deprecia-
tion and the labor cost—is minimized. A station executes a
number of consecutive tasks, each of which must be assigned
to exactly one station. Alternative execution modes are avail-
able for each task, which require different combinations of re-
sources and have different nominal duration times. A task can
only be executed by a station in a given mode if the station is
equipped with all the required resources. A single human oper-
ator or a single robot can be assigned to each station, whereas in
the industrial case study there are also stations with dedicated
machines, which can only perform a handful of special tasks.

In the case of the generation of alternative configurations,
the objective currently is to list all possible solutions. However,
here the system is fixed according to one of the two following
assumptions. (1) the line design cannot be changed compared to
the initial configuration, but the assignment of the tasks can be
modified (if possible). (2) main resources (robots and human
operators) are fixed, while auxiliary resources (tools) can be
changed arbitrarily together with the assignment of tasks.

As for the determination of the optimal portfolio of alter-
native configurations, the objective is selecting from the set
of all generated alternative configurations a smaller portfolio
for implementation on the shop floor that fits into the available
implementation budget and ensures the best performance over
all investigated scenarios. This is captured by maximizing the
throughput over all scenarios when using the best selected and
implemented configuration for the corresponding scenario and
respecting the BY configuration budget, the BR robot program-
ming task budget, and the BH human training task budget.

The notation of the latter problem is summarized in Table 1.
2
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3. Solution approach

3.1. Overview

The proposed approach to managing fluctuations consists of
the following steps, organized into a linear workflow:

1. Depart from the optimal production system configuration
for the nominal process. This can be computed, e.g., by
the MILP approach presented in [13];

2. Generate samples of relevant fluctuation scenarios;

3. Compute a large set of candidate alternative system con-
figurations, potentially containing all alternative configu-
rations that can be activated with a low changeover time
upon facing fluctuations;

4. Select an optimal portfolio of alternative configurations
that maximizes expected throughput over the fluctuation
scenarios subject to constraints on the available engineer-
ing effort.

Steps 2, 3 and 4 are presented in detail in the following sections.

3.2. Generating fluctuation scenarios

In this section data analytics approaches are discussed for
characterizing fluctuations from historical data and how to use
them for scenario generation. The biggest challenge is to cor-
rectly identify worker types with different experience level
based only on their processing times. If these types are avail-
able, then seasonal decomposition can find the right model to
represent the behavior of human learning and fatigue, and sim-
ilar methods are applied to describe machine deterioration as
well. The output of the following two submodules is then given
to the scenario generator which creates a pool of future scenar-
ios which can be used later.

The machines are assumed to have a fixed configuration,
which means that the machine settings and the system layout
will remain the same throughout the data analysis. However,
the machines are expected to deteriorate over time and require
maintenance to keep them in optimal condition. It is also as-
sumed that the human workers in the system will continuously
learn and improve over time, which is represented by a long-
term trend. However, these workers will also experience fa-
tigue, which follows a short-term seasonality pattern. The sys-
tem operates in a single shift, which means that exactly one
worker works during each shift at each station. The process-
ing times of the system are subject to random noise, which can
impact the overall system performance. Finally, the system as-
sumes that the worker pool can change, which means that the
workers available to work in the system can vary over time. This
can impact the performance of the system and requires careful
monitoring and analysis to ensure optimal performance.

3.2.1. Operator assignment via clustering
Each task has a technical minimum processing (denoted by

ymin
j for task j) time meaning that in the long run if all work-

ers are allowed to repeat the task infinitely many times then all

will reach (or get arbitrarily close to) these minimum process-
ing times, and each worker has an initial skill level of all tasks
(ystart

k j for worker k on task j). Therefore if all the processing
times are plotted in a high-dimensional real space then all the
scatters coming from the same worker will be placed on (or be
very close to) the same high-dimensional line (pointing from(
ystart

k1 , y
start
k2 , . . . y

start
km

)
to
(
ymin

1 , y
min
2 , . . . , y

min
m

)
, where m denotes

the number of tasks). By fitting the closest high-dimensional
line for each shift, shifts with the same worker will have lines
with very similar steepness. In practice this is equivalent to find-
ing the last principal component of all shifts, also called the
direction vector of the sought high-dimensional line. Let us de-
note the direction vector of shift i by vi = (vi1, vi2, . . . , vim) ∈
Rm.

The next task is to find automatically which direction vectors
(vi-s) belong to the same group, therefore to cluster the direc-
tion vectors. If the number of clusters is unknown, the elbow-
method can be used to find the optimal value for it, label of
shift i denoted by C1

i . Based on experiments, most of the related
shifts are put to the same cluster in most of the cases, however,
it is a strong suspicion that some shifts are mislabeled. The fol-
lowing sections will give a solution for the refinement.

The proposed solution is inspired again by the shape of data
point cloud. By nature, those shifts who belong to the same
cluster are positioned around the same high-dimensional line,
therefore there is a line corresponding to each cluster. Therefore
a line must be fitted on all data points from each cluster: the
closest lineLi is fitted by ordinal least squares on the processing
time data points of cluster C1

i , the label of the jth data point(
y j1, y j2, . . . , y jm

)
is the closest line’s label C2

j .
However nothing guarantees that data points from the

same shift fall into the same cluster label so far. A solution
for mix-labeled shifts is performing a simple majority vot-
ing. For all shifts assign the label which occurs most fre-
quently in the shift. Formally, the final label of shift i is
Ci := argmaxk

∣∣∣∣{ j| (y j1, y j2, . . . , y jm

)
∈ S i ∧ C

2
j = k
}∣∣∣∣, where S i

denotes shift i.
The proposed clustering method is of course not infallible,

but its efficiency in the current research field is unquestionable.
The solution highly depends on the background engineering
knowledge of the learning behavior of human workers. Our
clustering method is highly effective and useful in grouping
similar data points together based on a selected similarity met-
ric. Through our method, identifying patterns in data and gain
insights into the underlying structure of the data is possible,
which can be used to make predictions and improve decision-
making.

3.2.2. Time series analysis
Time series analysis (TSA) is particularly important in sit-

uations where changes over time can impact decision-making,
such as in production processes. The processing time logs time
series data, which consists of a negative exponential trend com-
ponent (due to long-term learning), a monotone increasing sea-
sonal component (due to short-term fatigue), and some small
random noise, provides an excellent example of the value of
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time series analysis. There are two very different types of pro-
cessing modes: human and machine modes. Intuitively, human
operations’ processing times will get shorter over repetition, but
it is also expected that workers get tired by the end of their shift,
therefore some processing time growth periodically is expected.
On the other hand, machines are famous for continuous work-
load, however maintenance is required from time to time.

In case of human operations, it is assumed to have either the
result of the clustering from previous section or the real sched-
ule timetable of the operators. Either way, the below described
steps are to be applied to each of the worker group separately.

The timestamps are typically not identically distributed,
therefore resampling is necessary. Resampling involves either
increasing or decreasing the number of data points in the time
series by interpolating the values of the series at new time
points. A mixture of upsampling and downsampling is used to
get a regularly spaced time data. The seasonal decomposition
of processing times shows the operator fatigue as the seasonal
component, and the operator learning as the trend component.
Assuming that the background learning curve is a monotone de-
creasing function which drops rapidly in the beginning and then
slowly approaches to the technical minimum time of the given
task, it can be modelled with a negative exponential function
( f (x) = a · e−bx + c) by non-linear least squares regression. The
parameters a, b and c of this background trend function are later
used in scenario generation.

In case of machine operations, the focus switches from trend
to seasonality. Machinery processing times have a stable trend
component, as there are no long-term learning present in case
of a machine, however, due to deterioration, maintenance events
happen on regular basis, which results in increasing processing
times. Since the target is to forecast future processing times,
the deterioration must be modelled. Deterioration is a monotone
increasing component and has the highest effect before mainte-
nance events, therefore is estimated by fitting a function in the
shape of f (x) = a · xb+c on the seasonal component. The fitting
method is the same as in case of human stations, and a, b and c
parameters are again used later in scenario generation.

3.2.3. Scenario generation
Scenario generation consists of three steps: history mining,

forecasting and translation. However, before any scenario gen-
eration process, scenario as a concept must be introduced. A
scenario is a series of estimated or expected processing times
for all tasks and for all process mode (human, machine, robot)
pairs. By using the results of the previous sections (clustering
and TSA), expected scenarios of the future are possible to fore-
cast for a given period of time. First, the latest shift’s mean pro-
cessing time is calculated and it is considered to be the current
state of the system. Then by using the results of TSA, the fu-
ture processing times are estimated by shifting current states via
learning and deterioration curve’s parameters.

3.3. Generating alternative configurations

The proposed approach focuses on two classes of alternative
configurations that can be activated with low changeover times

Dimensions, indices
S Number of scenarios
C Number of configurations
i Scenario index
j Configuration index
s Station index
t Task index
Input parameters
Θi j Throughput if configuration j is applied to scenario i [pcs/shift]
r0

ts Robotic task t is already implemented at station s (binary)
h0

ts Human task t is already implemented at station s (binary)
y0

j Configuration j is already implemented on the shop floor (binary)
R Set of tuples ( j, t, s) such that in configuration j, task t is performed by

a robot at station s
H Set of tuples ( j, t, s) such that in configuration j, task t is performed by

a human at station s
BY Available budget for implementing new configurations
BR Available budget for implementing new robotic tasks
BH Available budget for implementing new human tasks
Decision variables and objective
rts Robotic task t is selected for implementation at station s (binary)
hts Human task t is selected for implementation at station s (binary)
y j Configuration j is selected for implementation on shop floor (binary)
zi j Configuration j is assigned to scenario i (binary)

Table 1. Notations of the portfolio optimization problem.

when the system faces fluctuations: (1) alternatives that share
all resources with the nominal configuration, but apply a differ-
ent task assignment; and (2) alternatives that share the stations,
robots and machines with the nominal configuration, but may
involve different tools and different task assignments. Since the
investigated industrial case study is characterized by very lim-
ited flexibility in the system due to a large number of dedicated
machines, the number of such alternatives is relatively small,
and the proposed approach focuses on generating all alterna-
tive configurations.

The problem of searching for feasible alternative configu-
rations is formulated as a constraint satisfaction problem, with
variables corresponding to the index of the station assigned to
each of the tasks. Constraints capture that all resources required
by the task must be available in the station, according to the
applicable class of alternatives (see above); and the precedence
relations between tasks, which state that if task t1 is located ear-
lier in the process plan than task t2, then t1 must be assigned to
a station not later than task t2 in the serial assembly line. Then,
feasible alternative configurations are explicitly enumerated by
a depth-first search procedure.

In potential applications where generating all alternative
configurations is computationally intractable, a straightforward
heuristic approach is generating the optimal alternative config-
uration for each of the fluctuation scenarios.

3.4. Computing optimal portfolio of configurations

While a large number of system configurations can be gener-
ated effectively, the prerequisites and the process of the imple-
mentation of those configurations on the shop floor potentially
limits the number of configurations to be considered. Hence, in

4
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applications where the modification of the configuration or the
task assignment requires substantial effort (e.g., robot and PLC
programming, cross-training human operators, ensuring proper
parts supply), a smaller subset (portfolio) of alternative config-
urations must be selected carefully.

The objective is selecting a portfolio of alternative configu-
rations from the set of all generated alternative configurations
that fits into the available implementation budget and ensures
the best performance over all investigated scenarios, i.e., has
the maximal average throughput. The problem is formulated as
a MILP as in (1). Problem parameters, indices and variables are
summarized in Table 1.

maximize
1
S

∑
i, j

Θi jzi j (1a)

subject to
∑

j

zi j = 1 ∀i (1b)

zi j ≤ y j ∀i, j (1c)
y j ≤ rts ∀( j, t, s) ∈ R (1d)
y j ≤ hts ∀( j, t, s) ∈ H (1e)

y j ≥ y0
j ∀ j (1f)

rts ≥ r0
ts ∀t, s (1g)

hts ≥ h0
ts ∀t, s (1h)∑

j : y0
j=0

y j ≤ BY (1i)

∑
t, s : r0

ts=0

rts ≤ BR (1j)

∑
t, s : h0

ts=0

hts ≤ BH (1k)

rts, hts, y j, zi j ∈{0, 1} ∀t, s, i, j (1l)

The objective is to minimize the average throughput over all
scenarios (1a). Constraint (1b) states that exactly one configura-
tion is assigned to each scenario, while constraint (1c) ensures
that a configuration that is assigned to a scenario is also selected
into the portfolio. Constraints (1d,1e) state that if a configura-
tion is selected for the portfolio, then its robotic and human
tasks must be implemented (respectively). If a configuration,
robotic task, or a human task is already implemented, then they
are available later on (1f,1g,1h). The implementation budget of
new configurations (1i), new robotic tasks (1j), and new human
tasks (1k) must be respected.

4. Experimental evaluation

4.1. Industrial case study

Computational experiments were conducted to test the ef-
fectiveness of the proposed method. The test problem, reflect-
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Fig. 1. Experimental results: throughput with different portfolios of alternatives
as percentage of throughput with initial configuration

ing the design problem of an EV battery assembly line, aimed
to design a line for one product with 51 tasks over a period
of one year. The main resources of the line’s stations included
three types of robots, four types of dedicated machines, and hu-
man operators. Tasks on the stations could be executed in any
of the valid execution modes. The stations could be equipped
with 13 types of tools, with a maximum limit of three tools per
station. The carry-in and carry-out times of workpieces on the
stations were uniformly fixed at 2 seconds. The objective was
to minimize the depreciation cost of investment, labor cost, and
maintenance cost, while the cycle time needed to meet different
constraints given as input. If deterministic task execution times
were used, they were approximated by the sample mean.

4.2. Results

In this experiment, the impact of switching between alterna-
tive system configurations upon fluctuations was evaluated. All
alternative configurations for a given initial configuration were
computed and the fluctuation scenarios were generated by data
analytics. The solution of the optimal portfolio problem was
evaluated by simulation.

Experiments were executed on a rolling horizon with four
planning steps, each corresponding to 24, 36, 48 and 60 work-
ing days after line installation. In each planning step, the deci-
sions made in the previous steps on the alternatives to be imple-
mented were taken as constraints.

The initial configuration—which consisted of 16 stations—
was the optimal line for the EV battery use case with a cycle
time limit of 60 seconds, which corresponds to producing 480
pieces per 8-hour shift. It was assumed that initially no alterna-
tive configurations were available at the shop floor.

The set of alternative configurations consisted of 648 alter-
natives, with the assumption that the stations and their main re-
sources are fixed, whereas auxiliary resources can be added to
the stations whenever required. The generation of the compact
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representation of the alternatives took 0.025 seconds by con-
straint programming, whereas enumerating and writing them
took 5.508 seconds. The engineering budget was defined as
number of new configurations implemented per planning step,
while there was no separate budget imposed on the number of
robot and human tasks to be implemented. The five different
values of the budget evaluated and compared included 0,1,2,3
and infinite alternative configurations per planning step. In the
case of infinite budget it is allowed to implement arbitrary num-
ber of alternatives at the beginning of the planning horizon, and
serves as an upper estimation on the gain that can be achieved
by using alternative configurations to manage fluctuations.

In the baseline case, where the initial configuration is used
throughout the horizon, only 272-330 pieces can be produced
per shift, which is 31.1%-43.2% less than planned. When al-
ternatives can be exploited without limitations, the average
throughput increases to 306-365 pieces. Figure 1 shows the
comparison of throughput for optimal portfolios of alternative
configurations subject to different engineering budgets. Notable
that this improvement can be achieved with a rather small engi-
neering budget as well. Implementing only one alternative con-
figuration resulted in an improvement of 8.8% in the through-
put, while maximal improvement in the first planning step was
realized by implementing only 5 out of the 648 alternatives, re-
sulting in an improvement of 10.5%.

It is also worth mentioning that in each of the planning steps,
it only took 1.48 seconds on average to solve the configuration
portfolio optimization problem (excluding the time of loading
the input data).

5. Conclusions and future works

This paper addressed the management of fluctuations in pro-
duction systems via dynamic reconfiguration. Emphasis was
placed on generating alternative configurations a priori that can
be activated when certain fluctuations are detected, in order to
maintain system throughput while also keeping the number of
alternative configurations, and hence, the required engineering
effort in bay. Data-driven analysis techniques were proposed
to predict future behavior from past data, characterizing poten-
tial future variability. Then, a novel method was introduced to
compute an optimal portfolio of alternative configurations that
fit within engineering budgets and maximize average through-
put for the future scenarios. In computational experiments on an
EV battery assembly use case, throughput improved by 10-14%
with the implementation of only 5 alternative configurations for
a highly complex system.

The results of the current project indicate several avenues for
future research. Firstly, there is a need for data analytics on data
from other (similar) production lines when historical data from
the actual line is unavailable. Secondly, data analytics for re-
source breakdowns could help identify resources more prone to
failure and optimize system configurations accordingly, but ac-
cess to similar production line data is necessary due to the low
occurrence rate of failures. Lastly, combining data-driven tech-
niques with solid engineering knowledge could enhance pre-

dictions about future production system behavior by addressing
discrepancies between data-driven predictions and engineering
intuition.
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