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Abstract

In this paper we propose a branch-and-cut algorithm for solving an integrated
production planning and scheduling problem in a parallel machine environment.
The planning problem consists of assigning each job to a week over the planning
horizon, whereas in the scheduling problem those jobs assigned to a given week
have to be scheduled in a parallel machine environment such that all jobs are
finished within the week. We solve this problem in two ways: (1) as a monolithic
mathematical program, and (2) using a hierarchical decomposition approach in
which only the planning decisions are modeled explicitly, and the existence of
a feasible schedule for each week is verified by using cutting planes. The two
approaches are compared with extensive computational testing.

Keywords: Production planning and scheduling, Mathematical Programming,
Cutting planes, Parallel Machine Scheduling.

1. Introduction

Hierarchical production planning and scheduling deals with tactical and op-
erational decisions. The two types of decisions differ in their scope and time
horizon [1]. We focus on planning on a weekly basis the objective being to
determine the most cost effective way of distributing the workload between the
weeks, while scheduling is concerned with allocating resources to jobs to be per-
formed during the same week. The main advantage of hierarchical planning and
scheduling is that at each decision level, only the most relevant information is
used. E.g., when taking planning decisions, resource capacities are aggregated
and the fine details of dealing with single resources are neglected. In contrast,
when solving scheduling problems, only the weekly or daily assignments have
to be scheduled [2]. It is often mentioned that these decisions are worth to be
separated to ease the work of decision makers at either level. However, the two
types of decisions are strongly related, since both the overloading and the under-
loading of the weekly production capacities have undesired effects. Namely, if
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the weekly assignment cannot be met, then the plan has to be reworked. On the
other hand, a loose plan may cause unnecessary delays and thus incurs penal-
ties which could be avoided by more careful planning. To remedy this situation,
integrated planning and scheduling has been suggested by various authors [3, 4].

We will study a scheduling problem in a parallel machine environment, where
each job has a release time and a due-date, the release time being the first week
of the time horizon where the job may be started and the due-date is the week
where the job should be completed. Each job has to be assigned to a week and
those jobs assigned to a given week must be scheduled on the parallel machines
so that the load of every machine is no more than one week. The objective is
to minimize the earliness/tardiness penalty costs incurred by completing some
of the jobs before or after their due-dates. Albeit this setting is a simplification
of real-world planning and scheduling problems, where there may be additional
constraints on feasible solutions, the decomposition approach proposed in this
paper may be generalized to richer problem formulations, and our main purpose
here is to asses its merits in a “laboratory” environment.

While most of the known hierarchical approaches for solving hard schedul-
ing problems reduce the problem size by decomposing the problem along the
resources, our approach decomposes the problem along the types of decisions:
the upper level assigns the jobs to weeks, and the lower level schedules the
jobs assigned to a given week. Though this is a very natural decomposition
approach, the computational advantages are not apparent at once. We use a
compact problem formulation in which the decision variables represent only the
assignment of jobs to weeks; but there will be no explicit variables for repre-
senting the schedule of those jobs assigned to the same week. Instead, we verify
whether those jobs assigned to the same week can be completed during one
week by using cutting planes, or as a last resort, by solving a parallel machine
scheduling problem. In contrast to most previous approaches, we generate not
only infeasibility or “no-good” cuts, but other problem specific cuts as well, and
we try to generate violated cuts not only when an integer solution is found, but
in all search-tree nodes.

After a brief literature review (Section 2), we provide a formal problem
statement in Section 3. In Section 4 and Section 5 we propose two alternative
formulations: a monolithic mathematical program, and a compact one suitable
for decomposition, respectively. To strengthen the second formulation, we de-
rive cutting planes from lower bounds for the bin-packing problem (Section 5.1),
along with separation algorithms (Section 5.2). The cutting planes are used in
a Branch-and-Cut algorithm (Section 6), whose effectiveness is compared to
solving the integrated planning and scheduling problem as a monolithic math-
ematical program in Section 7.

2. Literature review

2.1. Parallel machine scheduling and bin-packing
By the parallel machine scheduling problem we mean the minimization of

the makespan of n jobs on m identical parallel machines. For parallel ma-
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chine scheduling, the worst case performance of 4/3 − 1/(3m) of the LPT rule
(longest processing time first) is derived by Graham [5]. We will heavily ex-
ploit the strong connection between the parallel machine scheduling and the
bin-packing problems, see Coffman et al. [6]. In that paper a new algorithm,
called MULTIFIT, is presented, which uses ideas from bin-packing algorithms,
and it is shown that it produces a schedule of makespan at most 1.22 times the
optimum. However, its running time is larger than that of LPT, since in each
iteration the FIRST-FIT-DECREASING bin-packing algorithm is run, which
takes as much time as a single run of the LPT heuristic for parallel machine
scheduling, and the desired number of iterations is about 7 for a large number of
machines (over 8). This connection is pushed further by Hochbaum and Shmoys
by developing the first polynomial time approximation scheme for the parallel
machine scheduling problem [7]. In contrast to previous approaches, no weight
function over the jobs is applied when deriving the approximation ratio of the
algorithm. A thorough survey of approximation algorithms for bin-packing can
be found in [8]. The lower bounds L1 and L2 (for bin-packing) are proposed in
[9] to be used in exact algorithms. These bounds are enhanced in [10]. These
lower bounds will be used in Section 5.1, where we give their precise definitions.

A cutting plane based approach for solving the parallel machine scheduling
problem is proposed by Mokotoff [11]. The novelty of the method is a cutting
plane which is valid for a specific face of the single-node fixed charge network
model, and in fact can be derived from the well-know flow-cover inequality [12].

2.2. Hierarchical decomposition
Hierarchical decomposition approaches are applied widely in the field of pro-

duction planning and scheduling. Although the decisions made on the different
levels are strongly related, solving these problems in an integrated way is often
considered to be computationally intractable. It is therefore typical to apply
single- or multi-pass heuristics. In the single-pass case, one fixed upper level
plan is unfolded on the lower level, see e.g., [2, 13]. Obviously, a shortcoming
of this approach is that bad planning decisions may result in situations where
no detailed schedules can meet all production goals. Multi-pass heuristics aim
at relieving such situations by iterating between the two levels, and modifying
the upper level plan according to the problems identified in the previous itera-
tion [14, 3]. Sawik [15] compares monolithic and hierarchical MIP formulations
of an assembly line scheduling problem. In the hierarchical model, the upper
level assigns jobs to resources and the lower level sequences them. The two levels
are joined in a single-pass heuristic, and computational experiments have shown
that the quicker hierarchical decomposition approach finds optimal solution for
most of the instances.

Subsequently, we focus on exact solution methods that use hierarchical de-
composition. One of the problems frequently addressed is the multi-machine
assignment and scheduling problem (MMASP): a set of jobs, characterized by
individual time windows, are to be scheduled on unrelated parallel machines to
minimize the total assignment cost. In all of the following papers, the master
problem assigns jobs to machines, while a separate subproblem belongs to each
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machine, sequencing the jobs on that machine. Jain and Grossmann [16] apply a
MILP/CP approach, and add an infeasibility or “no-good” cut for the complete
set of jobs scheduled on the machine where infeasibility is detected. Hooker
and Ottoson [17] introduce logic-based Benders decomposition, and illustrate
the approach on MMASP. The same type of infeasibility cuts is used, though an
indication is made that these cuts can be strengthened based on the CP proof of
infeasibility. Sadykov and Wolsey [18] compare several monolithic and MIP/CP
hybrid decomposition approaches. The new results include a tight MILP for-
mulation. Their decomposed approaches detect infeasibility or ”no-good” cuts
in internal nodes of the branch-and-bound tree, after a suitable rounding of the
LP solutions. Sadykov [18] investigates the solution of the one-machine sub-
problem of the above multi-machine assignment problem, which corresponds to
1|rj |

∑
wjUj . Two new classes of cuts are introduced for this problem. The

first class is infeasibility cuts of low cardinality, which are found by a modified
version of Carlier’s branch-and-bound algorithm [19]. The second class consists
of a completely different type of cuts based on the edge-finding constraint prop-
agation rule. Bockmayr and Pisaruk [20] investigate the problem of generating
infeasibility cuts by CP for MILP in a general setting. The application of these
ideas to MMASP leads to infeasibility cuts. MMASP has been generalized to
cumulative resources in [21], and solved by a hybrid MIP/CP approach fol-
lowing the above decomposition scheme. MMASP is extended to multi-stage
processes in [22]. The same assign/schedule decomposition approach is taken.
The main difference due to the multi-stage processes is that the single-machine
subproblems are no longer independent, hence, a single subproblem involving
all machines and jobs is solved, but the resulting cuts may not be valid and cut
off the optimal solution. A different, multi-product continuous plant schedul-
ing problem with a single processing unit, subject to sequence-dependent setup
times, is discussed in [23]. A decomposition approach is proposed, where the
upper level sets production levels and inventories for macro time periods, and
the lower level sequences the production activities. If the lower-level problem
proves infeasible, then integer and logic cuts are fed back to the upper level.
Both levels are described by and solved as a MILP.

Artigues et al. [24] investigate a hybrid decomposition based approach for
an integrated employee timetabling and job-shop scheduling problem which is
an extension of the classical job-shop scheduling problem. A decomposition-
based CP formulation is proposed, which assigns jobs (possibly partially) to
time periods (shifts). Guyon et al. [25] study a similar problem. In the proposed
solution approach, there is a master problem for creating a timetable for the
employees, while the subproblem checks if a feasible job schedule exists for the
given timetable. It is exploited that the subproblem corresponds to a maximum
flow problem, and hence, a minimum cut is fed back to the master problem
upon infeasibility. An initial set of cuts is generated in a pre-processing step.

A review of solution approaches has been presented by Grossmann et al [26].
The possible ways of integrating production planning and scheduling are sur-
veyed in [4].
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3. The integrated production planning and scheduling problem

In this section we give a formal definition of the scheduling problem studied
in the paper. Suppose that the time horizon is divided into τ equal length
periods. The common length of the periods will be denoted by P , and let
T = {1, . . . , τ} index these periods. There is a set of jobs N to be scheduled on
a set of parallel identical machines M . Each job j ∈ N has a release date rj and
a due-date dj , both expressed in terms of periods. Namely, rj ∈ T is the earliest
time period where the job may be processed, and dj ∈ T is the period when the
job should be finished without paying a penalty. On the one hand, if job j is
finished early in some period Cj < dj , the penalty incurred is (dj − Cj)ej . In
contrast, if it is finished late in some period Cj > dj , the penalty to be payed
is (Cj − dj)`j . The processing time of job j is pj on all machines. Each job
has to be processed on exactly one machine, and the preemption of jobs is not
allowed. No machine may process more than one job at a time. Furthermore,
we make the following assumptions about jobs.

Assumption 1. The jobs are shorter than P , the common length of the periods.

Assumption 2. Each job has to be processed in a single period, i.e., no job
may cross the boundary of two consecutive periods.

These two assumptions are met in a number of practical applications. For
instance, if periods represent weeks of 5 working days each, then the first as-
sumption says that no job takes more than 5 working days, and the second
assumption means that no job may be left unfinished over the weekend.

The ultimate goal is to assign jobs to periods and to machines in such a
manner that the total processing time of those jobs assigned to the same pe-
riod and to the same machine is at most P , and the total penalty incurred by
completing some of the jobs early or late is minimized.

Note that this problem is NP-hard, because it contains the NP-hard bin
packing problem (see, e.g., [10]): when the jobs have the same release times
and due-dates, then there exists a schedule with zero cost if and only if the
corresponding bin packing problem with items of size pj and bin capacity P
has a solution with at most |M | bins. In the next two sections we present
two alternative approaches for solving the integrated planning and scheduling
problem just defined.

4. Formulation as a monolithic integer program

In this section we define a mathematical program for solving our integrated
planning and scheduling problem. The decision variables are xjkt, for j ∈ N ,
k ∈ M and t ∈ T , representing the assignment of jobs to machines and time
periods. In a feasible solution, for each job j, precisely one of the xjkt, k ∈ M ,
t ∈ T , takes the value 1, and all other variables belonging to the same job take
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value 0. Therefore, our planning problem can be formulated as follows:

min
x

∑
j∈N

∑
k∈M

∑
t∈T

wjtx
j
kt (1)

s.t.∑
k∈M

∑
t∈T

xjkt = 1, ∀ j ∈ N, (2)∑
j∈N

pjx
j
kt ≤ P, ∀ k ∈M, t ∈ T, (3)

xjkt = 0, ∀ j ∈ N, k ∈M, t < rj (4)

xjkt ∈ {0, 1}, ∀ j ∈ N, k ∈M, t ∈ T. (5)

The weights in the objective function are given by

wjt = max{dj − t, 0}ej + max{t− dj , 0}`j , (6)

which expresses that if job j finishes early in period t < dj , i.e., xjkt = 1, the
penalty is (dj − t)ej , whereas if it finishes late in period t > dj , i.e., xjkt = 1,
the penalty is (t − dj)`j . Constraints (2) ensure that each job is assigned to
precisely one machine and to one period. The inequalities (3) are the capacity
constraints for each machine and each period. The equations (4) set all the xjkt
variables to 0 for all periods t before the release date of job j. Notice that these
variables can be eliminated in actual computations.

The feasible solutions X of the above mathematical program are binary
vectors satisfying all of the constraints. Let conv(X) denote the convex hull
of these vectors. It is a convex polytope and the optimal solutions correspond
to a subset of its vertices. Since our planning problem is NP-hard, conv(X) is
unlikely to admit a representation with a polynomial number of inequalities in
the size of the problem data. Therefore, we can solve it by, e.g., branch-and-cut
type methods, which combine branch-and-bound and the generation of valid
inequalities violated by fractional solutions in search-tree nodes.

To generate valid inequalities, observe that the formulation contains |M ||T |
knapsack sets of the form Y = {y ∈ Rn |

∑n
i=1 aiyi ≤ P}. There are many

classes of valid inequalities for Y , see e.g., [27, 12, 28], and state-of-the-art inte-
ger programming solvers contain the most effective ones. In addition, Gomory’s
mixed integer cuts can always be generated to cut off fractional solutions.

5. A problem decomposition based approach

Our second formulation is more compact than the first one as the decision
variables do not represent explicitly the assignment of jobs to machines. Namely,
the decision variables are zjt , where zjt = 1 if and only if job j is assigned to
period t. Clearly, for each job j, precisely one of the variables zjt , t ∈ T , takes
value 1, all other variables in this set take value 0.
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min
z

∑
j∈N

∑
t∈T

wjt z
j
t (7)

s.t.∑
t∈T

zjt = 1, ∀ j ∈ N, (8)

z ∈ Bt, ∀ t ∈ T, (9)
zjt = 0, ∀ j ∈ N, t < rj , (10)

zjt ∈ {0, 1}, ∀ j ∈ N, t ∈ T. (11)

The weights wjt in the objective function are defined by formula (6). The
constraints (8) ensure that each job is assigned to precisely one time period. The
sets Bt in the set of constraints (9) consists of those binary vectors that satisfy
the following condition: z̄ ∈ Bt if and only if the set of jobs {j ∈ N | z̄jt = 1}
can be scheduled on |M | parallel machines such that the total processing time
of those jobs assigned to any of the machines is not more than P . The set Bt
can be described as follows:

Bt :=

z ∈ {0, 1}
|N |×|T |

∣∣∣∣∣∣∣∣∣
zjt −

∑
k∈M xjk,t = 0, ∀j ∈ Nt∑

k∈M xjkt ≤ 1, ∀ j ∈ Nt,∑
j∈Nt pjx

j
kt ≤ P, ∀ k ∈M,

xjkt ∈ {0, 1}, ∀ j ∈ Nt, k ∈M.

 ,

where Nt := {j ∈ N | rj ≥ t}. The condition z ∈ Bt is closely related to a bin-
packing problem. Recall that in the bin-packing problem there is given a set of n
“items” with sizes s1, . . . , sn, and a supply of identical containers of capacity C,
and the objective is to determine the minimum number of containers to pack all
the items, see e.g., [6]. To simplify notation, let p̃j = pj/P . Then each bin is of
size 1, and the item sizes are between 0 and 1. Deciding whether all jobs assigned
to time period t can be scheduled on |M | identical, parallel machines such that
no machine receives more work than P is equivalent to verifying whether the
minimum number of bins needed to pack all the items is not more than |M |.
We will derive valid inequalities for bin-packing problems and apply them to
cut off points not in Bt.

5.1. Valid inequalities from bin-packing problems
In this section we derive various classes of valid inequalities from lower

bounds for the bin-packing problem with a set of items H and item sizes
p̃j ∈ (0, 1].

L1 inequalities. There are several lower bounds in the literature for the mini-
mum number of bins to fit all the items in H. For instance, the well-known L1

lower bound for a set of items H is L1(H) := d
∑
j∈H p̃je [9]. To turn it into

a valid inequality, suppose we have a set of jobs H to be defined later. Since

7



the set of jobs H has to be scheduled on |M | identical parallel machines, the
inequality ∑

j∈H
p̃jz

j
t ≤ |M | (12)

is valid for Bt.

L2 inequalities. Now consider the lower bound L2 of [9]. For a set of items H,
the L2 lower bound is

L2(H) := max
ε∈[0, 12 ]

|{j ∈ H | p̃j > 1− ε}|+ L1({j ∈ H | ε ≤ p̃j ≤ 1− ε}).

Therefore, for any ε ∈ [0, 1
2 ] the inequality ∑

j∈H:p̃j>1−ε
zjt

+

 ∑
j∈H:ε≤p̃j≤1−ε

p̃jz
j
t

 ≤ |M | (13)

is valid for Bt. Clearly, it is enough to consider ε from the set

P 1
2
(H) = [0,

1
2

] ∩ ({p̃j | j ∈ H} ∪ {1− p̃j | j ∈ H}) . (14)

Notice that for ε = 1
3 , the following inequality is also valid ∑

j∈H:p̃j>
2
3

zjt

+

 ∑
j∈H: 13<p̃j<

2
3

0.5zjt

+

 ∑
j∈H:p̃j=

1
3∨p̃j=

2
3

p̃jz
j
t

 ≤ |M | (13’)

Fekete&Schepers inequalities. The third class of valid inequalities is derived
from the lower bound L

(p)
∗ of [10]. Define for any k ∈ N

L
(k)
2 (H) := max

ε∈[0, 12 ]
L1(Uεu(k)(H)),

where u(k) : [0, 1]→ [0, 1] with

u(k)(x) :=
{
x for x(k + 1) ∈ Z
b(k + 1)xc 1

k , else

and Uε : [0, 1]→ [0, 1] with

Uε(x) :=

 1, for x > 1− ε
x, for ε ≤ x ≤ 1− ε
0, for x < ε

For p ≥ 2, the lower bound L
(p)
∗ for the set of items H is

L
(p)
∗ (H) := max{L2(H), max

k=2,...,p
L

(k)
2 (H)}.
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The validity of this lower bound for the bin-packing problem is verified in [10].
We can turn this into a family of valid inequalities for Bt as follows. Using the
definition of L(k)

2 , for fixed ε ∈ P 1
2
(H) and k ≥ 2, the inequality ∑

j∈H:p̃j>1−ε
zjt

+

 ∑
j∈H:ε≤p̃j≤1−ε

Uεu(k)(p̃j)z
j
t

 ≤ |M | (15)

is valid for Bt.

Infeasibility or “no-good” cuts. Finally, if a set of items H cannot be scheduled
in the same time period t, then the infeasibility cut∑

j∈Hext
zjt ≤ |H| − 1, (16)

is valid for Bt, where Hext is the set H ∪ {j ∈ N | pj ≥ maxk∈H pk}.

5.2. Separation algorithms
In order to find violated inequalities (cuts) in classes (12), (13), and (15),

we have to define the set H.
As for (12), for each period t we define the set Ht := {j ∈ N | t ≥ rj},

and add the corresponding L1 inequality to the initial formulation. Additional
inequalities of this type are not separated during the branch-and-cut algorithm,
because those would be dominated by the L1 inequality for Ht.

Concerning (13), we add the L2 cuts using Ht and ε = 0.5 to the initial
formulation along with (13’). To separate additional cuts of type L2 in the
course of the branch-and-cut search, firstly we define for each period t the set
H̄t = {j ∈ N | z̄tj > 0.01}, where z̄ is the current optimal solution of the LP
relaxation. Then we try to find ε ∈ P 1

2
(H̄t) such that a constraint is violated

from (13). The pseudo-code of the separation algorithm for finding violated L2

cuts is given below:

1. for ε ∈ P 1
2
(H̄t) loop

2. if the L2 inequality with ε and H̄t is violated then
3. add the L2 cut (13) to the LP relaxation.
4. end-if
5. end-loop

Finally, the cuts (15) are separated in search-tree nodes (including the root)
in a similar way as the L2 cuts, for k = 2, . . . , 10.

Prior to trying to separate a violated inequality, we solve the parallel ma-
chine scheduling problem on the set of jobs H̄t by using a simple heuristic, like
LPT (longest processing time first). (We may also solve a bin-packing problem
seeking a solution using at most m bins.) If the heuristic finds a feasible sched-
ule on the m machines with makespan P or less, then none of the cuts may
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be violated. Otherwise, we try to find violated (13) and (15) cuts. If no vio-
lated cut in these classes is found, we solve the NP-complete decision problem
whether the jobs in H̃t = {j ∈ N | z̄tj > 0.1} (jobs with smaller contribution
than 0.1 to the period t are omitted) can be scheduled on |M | parallel machines
such that no machine receives a workload more than P , which is equivalent to
a bin-packing problem. This bin-packing problem can be solved in a number
of ways [9], and if the result is that more than |M | machines are needed to
schedule all the jobs in H̃t, then we add the infeasibility cut (16) to the LP re-
laxation. In our implementation, we checked feasibility by solving the following
mathematical program (without any objective function) by a MIP solver:

∑
k∈M

yjk = 1, ∀ j ∈ H̃t, (17)∑
j∈H̄t

pjy
j
k ≤ P, ∀ k ∈M, (18)

yjk = 0, ∀ j ∈ H̃t, k ∈ {kj + 1, . . . , |M |}, (19) ∑
j∈H̃t:pj>P

2

yjk

+

 ∑
j∈H̃t:pj=P

2

yjk
2

 ≤ 1, ∀ k ∈M, (20)

yjk ∈ {0, 1}, ∀ j ∈ H̃t, k ∈M. (21)

The constrains (17) ensure that each job is assigned to exactly one machine.
Inequalities (18) enforce the capacity constraints on the machines. The symbol
kj in constraints (19) stands for the position of job j within an arbitrary ordering
of the jobs in the set H̃t, and therefore, the constraints break the symmetries
of machine assignment. Finally, line (18) corresponds to the L2 inequalities for
the bin packing subproblem with items H̃t and ε = 1

2 .

6. The branch-and-cut algorithm

Branch-and-cut is an extension of branch-and-bound where valid inequalities
(cuts) violated in a search-tree node are sought and added to the LP relaxation
corresponding to the node. Each node in the course of our branch-and-cut
algorithm is processed as follows:

1. Let z̄ be the solution of the LP relaxation corresponding to the node.
2. if z̄ is integral then
3. if z̄ ∈ Bt for each period t then
4. fathom the node
5. else if there exists a violated (13) or (15) cut then
6. add the violated cut along with the corresponding infeasibility cut to

the LP relaxation and reoptimize
7. else add the infeasibility cut for H̄t = {j ∈ N | z̄tj = 1} to the LP

relaxation and reoptimize
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8. end-if
9. else apply the separation algorithms to the LP-relaxation, and if any cuts

are added to the LP-relaxation, reoptimize
10. end-if

Several comments are in order. In step 3, z̄ ∈ Bt is verified in several phases.
Firstly, the bin-packing problem with items H̄t = {j ∈ N | z̄j = 1} is solved
heuristically (using the first-fit decreasing algorithm). If at most |M | bins (ma-
chines) suffice, then the jobs assigned to period t can be scheduled on |M |
parallel machines within P time units. Otherwise, the separation algorithms
are applied using the set H̄t. Notice that step 7 ensures that infeasible integral
solutions are always cut off by a valid inequality and the node is reoptimized
afterwards. In step 4, fathoming a node consists of dropping the node and the
entire subtree below it. Moreover, if the solution represented by z̄ is better than
the best solution found so far, then z̄ is recored as the best solution. Notice
that the solution may be improved by some heuristics, which we discuss in the
end of this section.

In step 9, the set H̄t is defined with respect to the fractional solution z̄ as
in Section 5.2, and it may well be the case that no violated cuts are found.

After reoptimization the same node is processed again. This is repeated
until the node is fathomed in step 4, or fractional solutions are obtained during
at most 2 (20 in the root node) consecutive reoptimization steps. In the latter
case, some variable ztj with 0 < z̄tj < 1 is selected for branching and it is set to 0
and 1 in the two descendants of the node, respectively. Note that inactive cuts
are deleted from the LP relaxation in every 5th level of the search tree.

Finally, we mention that we implemented a quick constructive heuristic, and
ran it before the branch-and-cut algorithm to ensure that the solver always
find a feasible solution. The heuristic sorts the jobs by non-increasing lateness
penalties `j , and assigns them one-by-one to a time period and a machine that
has enough free capacity to process job j and which incurs minimal penalty.
This initial solution is improved using a hill climbing search with two types of
moves: (i) reassign a job to a different period, and (ii) interchange two jobs
belonging to different periods. In either case the resulting schedule has to be
feasible, and the algorithm chooses a move which strictly decreases the objective
function. This is repeated until a local optimum is reached, i.e., the schedule
cannot be further improved by any of these moves.

If an integral assignment of jobs to periods is found in a search-tree node,
then a schedule of minimum makespan is sought in each period using the LPT
rule. If the makespan is at most P in all periods, then the solution is feasible
and the hill climbing heuristic is applied to improve it.

7. Computational results

In this section we compare the computational performance of the proposed
hierarchical decomposition approach with cutting planes to the results achieved
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by solving monolithic mathematical program. Two different versions of the
hierarchical solver has been tested, using different types of cuts:

• Hierarchical H1, a hierarchical solver using all the presented classes of
cuts, namely infeasibility (16), L2 (13), and Fekete&Schepers (15). The
initial MILP formulation contained the L1 (12) inequalities and the L2

inequalities for Ht and ε ∈
{

1
2 ,

1
3

}
.

• Hierarchical H2, a hierarchical solver making use of infeasibility cuts (16)
only. The initial MILP was the same as above.

All the methods have been implemented in the Mosel modeling language of
FICO Xpress. The experiments were run on a 1.86 GHz Intel Xeon computer
with 2 GB of RAM under Windows Server 2003. The time limit of a single run
was set to 1200 seconds.

7.1. Test instances
Problem instances with different characteristics have been generated. The

instances contained a mixture of so-called small jobs with processing times pj
taken at random from U [1, 33] and large jobs with pj from U [34, 100], where
U [a, b] denotes the discrete uniform random distribution over the integers in
[a, b]. The period length P was fixed to 100. To generate time windows for the
jobs, two integers, α and β were taken from U [1, τ0], and we set rj = min(α, β)
and dj = max(α, β). Here, τ0 is the nominal length of the time horizon, which
characterizes the variance of the release and due-dates. To ensure that all in-
stances are solvable, a longer time horizon with τ = τ0 +d 2·

∑
j∈N pj

P ·|M | e was used in
the models. Earliness and tardiness penalties ej and `j were randomized from
U [1, 10]. The problem size was controlled by generating instances with different
number of machines |M | (the considered values were 2, 6, and 10), and nominal
number of periods τ0 (2, 6, and 10). The value of the number of jobs, |N |, was
determined separately for each set of instances according to their complexity:

• Set A contained small jobs only, and the considered values of |N | were
100, 150, and 200;

• Set B, with half of the jobs being small and half of them large, |N | =
50, 100, 150;

• Set C containing large jobs only, |N | = 40, 60, 80.

Each set consisted of five instances generated for every combination of pa-
rameters |N |, |M |, and τ0, resulting in 405 instances altogether.

7.2. Detailed evaluation
The results are presented in Table 1 (results by number of jobs and time

periods) and Table 2 (by number of jobs and machines). Each row of the
tables displays combined results for the same value of |N | and τ0 (Table 1) or
|M | (Table 2). Columns Opt display the number of instances solved to proven

12



optimality out of 15; columns UBRE and LBRE contain the relative error of
the upper and lower bounds found by the given method in percent, calculated
using the following formulas:

UBREδS =

∑
i∈S

UBδi−LB
∗
i

LB∗i

|S|
· 100

LBREδS =

∑
i∈S

UB∗i−LB
δ
i

UB∗i

|S|
· 100

Here, UBREδS and LBREδS are the relative error of the upper and lower bounds
computed by solver δ on instance set S; UBδi and LBδi are the upper and
lower bounds found by δ on instance i, and UB∗i and LB∗i are the best known
bounds for the same instance. Note that for the instances whose optimal solution
value was 0, all methods found proven optimal solutions, and therefore the
above formula does not lead to division by zero. Columns Time contain the
average computation times (including those runs where the time limit of 1200
seconds was hit); finally, column Cuts displays the average number of cuts
generated during the solution of an instance, including all infeasibility, L2, and
Fekete&Schepers cuts.

The results show that all solvers could cope with large instances of set A,
medium-sized problems in set B, while even smaller instances in set C were
challenging. Furthermore, problems with large |M | or large τ0 were easier to
solve for all methods, although the effect of these parameters is more apparent
on the hierarchical solvers than on the monolithic. The hierarchical solvers
outperformed the monolithic on sets A and B, whereas they achieved poorer
results on set C. The detailed results differ significantly for the three sets, and
therefore we review them separately for each set.

On set A, with small jobs only, the two hierarchical solvers outperformed
the monolithic approach (107–108 versus 68 optimal solutions). Even for the
instances not solved to optimality, the gap between the UBs and LBs found
by the hierarchical solvers was insignificant, typically below 0.01%. The gap
was considerably greater in case of the monolithic solver, and this solver also
required higher run times than the hierarchical ones, partly due to the higher
number of timeouts. The advanced cuts in method Hierarchical H1 did not
lead to improved performance, instead, it found one less optimal solution than
Hierarchical H2.

The difference of the two hierarchical methods becomes spectacular on set
B, where method Hierarchical H1 dominated the other two solvers (58 versus
47–48 optimal solutions). This method not only found proven optimal solutions,
but also, the relative error of the UBs found was considerably smaller than for
the other methods.

The results on set C are less favorable: the monolithic solver found signif-
icantly more optimal solutions (115 versus 67–77), and achieved smaller gaps
than the hierarchical methods. Nevertheless, the gap was mainly due to the

13



poor LBs, while the relative error of the UB was typically below 1%. The run
times were also lower for the monolithic solver than for the hierarchical ones.

7.3. Final assessment
It can be stated that the hierarchical decomposition approach dominates the

monolithic one when the lower level problems are easy to solve, i.e., for small
jobs or many time periods, and in applications where the emphasis is on finding
good solutions rather than computing lower bounds. For the easiest cases, even
the simpler method Hierarchical H2 with feasibility cuts works suitably well,
whereas adding more advanced cuts (Hierarchical H1 ) extends the applicability
of the hierarchical approach to more complicated cases. Large job instances are
easy for the method using the monolithic formulation, since for such instances
(flow) cover cuts are rather effective for single machines. Unfortunately, we have
not found an efficient way of using them in the upper level of our decomposition
method.

8. Final remarks

In this paper we have devised a hierarchical decomposition based method
using cutting planes for solving an integrated planning and scheduling problem.
In our method we generate not only infeasibility cuts, but valid cuts derived
from the bin-packing problem as well, even if the solution is fractional. Of
course, the strength of these cuts depends on the instances to be solved, and by
extensive testing we have characterized those problem instances on which our
method is particularly effective.

Since the parallel machine environment considered may have limited ap-
plications in practice, we plan to extend the model with machine dependent
processing times and precedence constraints.
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