
Assembly Planning by Disjunctive Programming and

Geometrical Reasoning

Markó Horvátha,∗, Tamás Kisa, András Kovácsa, Márk Fekulaa

aInstitute for Computer Science and Control (SZTAKI), Kende str. 13-17, Budapest,
H-1111, Hungary

Abstract

The challenge in modeling and solving assembly planning problems lies in
integrating combinatorial optimization techniques for finding efficient task
sequences and resource assignments with geometrical reasoning to ensure the
geometrical and technological feasibility of the assembly plans. This paper
proposes a Benders decomposition approach that separates the macro-level
planning problem, responsible for task sequencing and resource assignment,
from micro-level validation on detailed geometrical and technological models.
Feedback from the micro to the macro level is provided in the form of dis-
junctive constraints generated during search, which precludes the repeated
occurrence of the collisions encountered in earlier iterations. A disjunctive
programming approach is proposed to solve the macro-level planning problem
with the added constraints. The efficiency of the approach is demonstrated
both in industrial case studies and in computational experiments on gener-
ated problem instances.

Keywords: assembly planning, combinatorial optimization, disjunctive
programming, geometrical reasoning

1. Introduction

This paper proposes an efficient solution method for the assembly plan-
ning problem that can be briefly stated as follows. Given a set of parts

∗Corresponding author
Email addresses: marko.horvath@sztaki.hu (Markó Horváth),

tamas.kis@sztaki.hu (Tamás Kis), andras.kovacs@sztaki.hu (András Kovács),
mark.fekula@gmail.com (Márk Fekula)

Preprint submitted to Computers & Operations Research August 6, 2021

(components), and a set of candidate assembly tasks to join these parts,
find a subset of the tasks, along with a sequence of the selected tasks and
an assignment of resources to the selected tasks, such that (i) the selected
tasks construct the final product from the individual parts, (ii) the sequence
of tasks with the assigned resources has a technologically and geometrically
feasible physical realization, and (iii) a cost function is minimized. Checking
whether a sequence of assembly tasks has a feasible realization may be tricky,
just think about how the 27 parts of the Rubik cube (in case of the original
Rubik brand) can be assembled together.

Assembly planning must match often conflicting aspects of product de-
sign, production technology, production system configuration, and produc-
tion economics. To achieve this, it must combine combinatorial optimization
techniques with geometrical reasoning over models of the product and the ap-
plicable equipment, knowledge-based techniques for technological feasibility,
etc. This complexity results that assembly planning is the least automated
field in production informatics. Nevertheless, this paper proposes a Ben-
ders decomposition based approach that combines discrete optimization in
the master problem with geometrical reasoning in the subproblem, where
the subproblem returns disjunctive constraints if the solution of the master
problem has no feasible realization.

Compared to classical approaches to assembly planning, which compose
the complete combinatorial problem model from the geometry of the product
and the equipment in a preprocessing phase (Wilson and Latombe, 1994), the
proposed approach generates constraints during search. The novel approach
enables lifting some of the limiting assumptions of the earlier contributions:
e.g., it allows arbitrary assembly paths instead of the former linear move-
ments in a few predefined directions. The latter assumption was necessary in
order to generate all constraints on the assembly task sequence by performing
a finite number collision detections during preprocessing.

This work is partly based on the Benders solution approach presented in
(Kardos et al., 2020), nevertheless, with more sophisticated and efficient solu-
tion techniques. The underlying models are similar apart from minor differ-
ences (e.g., the set of parts that can be grasped by a fixture are characterized
in different ways), yet, the solution techniques differ substantially: mixed-
integer linear programming is used to solve the Benders master problem
instead of constraint programming (CP); sophisticated modeling techniques
are proposed for encoding the connectivity status of the parts in different
stages of the assembly process; the constraints fed back from the subproblem

2

to the master problem are significantly stronger, which results in less iter-
ations in the Benders approach. In our approach, the subproblem provides
violated disjunctive constraints that can be modeled by additional binary
variables and linear constraints in the master problem. To the best of our
knowledge, the combination of Benders decomposition with disjunctive pro-
gramming is new. Finally, various techniques, including caching, have been
added to speed up the solution of the subproblems as well. Moreover, the
computational efficiency of the proposed techniques are investigated in a
large set of generated problem instances, which has not been performed for
the earlier approach. The generated problem instances are freely available,
and they can be used by other researchers for benchmark purposes.

We describe the problem in Section 2, and briefly summarize the related
results in Section 3. In Section 4, we provide a mixed-integer linear pro-
gramming formulation of the problem. As the mathematical program may
contain an exponential number of disjunctive constraints, we turn to logic-
based Benders decomposition to solve it, which is the topic of Section 5. The
disjunctive constraints are generated by analysing the assembly sequence
found by solving the master problem, and the analysis is based on geometric
reasoning as explained in Section 6. We present computational results on
some industrial test cases and also on generated instances in Section 7. We
compare our results to previous work in Section 8, and conclude the paper
in Section 9.

Terminology An undirected graph is an ordered pair G = (V (G), E(G)),
where V (G) is a set of elements, called nodes, and E(G) ⊆ V (G)× V (G) is
a set of unordered pairs of nodes, called edges. All graphs in this paper are
simple, that is, undirected and contains no loop edges, i.e., edges e = {v, v}
for some node v.

A graph G′ is a subgraph of G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
For a subset S ⊆ V (G) of nodes, the subgraph induced by S is the graph
G[S] := (S, σ(S)) where σ(S) := {{u, v} ∈ E(G) : u ∈ S, v ∈ S}.

For a subset S ⊆ V (G) of nodes let [S, S̄]G := {{u, v} ∈ E(G) : |S ∩
{u, v}| = 1} be the set of edges between S and S̄ := V (G) \ S, also called
a cut. A cut [S, S̄]G is an r − s cut, if r ∈ S and s ∈ S̄. Moreover, we use
notation dG(S) := |[S, S̄]G| and dG(v) = dG({v}). The graph G is connected
if [S, S̄]G 6= ∅ for all ∅ 6= S (V (G). A tree is a minimally connected graph,
i.e., if any one edge was removed, the graph does not remain connected. A
subgraph T of G is a spanning tree of G if T is a tree and V (T) = V (G). A

3

path P is a tree with d(v) ≤ 2 for each v ∈ V (P). In other words, a path
is a finite sequence of edges which joins a sequence of nodes which are all
distinct, and a graph is connected if there is a path between every pair of its
nodes.

A connected graph is biconnected if any one node was removed, the graph
remains connected. A biconnected component is an inclusion-wise maximal
biconnected induced subgraph.

2. Problem statement

In the assembly planning problem, there is a set of parts V , and a set
of candidate assembly tasks T for joining them. Each task t ∈ T comprises
an unordered pair of parts, 〈a, b〉, to be joined. The additional technological
data associated to the task, such as the required motion of the parts, will be
discussed in detail in Section 6. These candidate tasks define the so-called
liaison graph of the product, i.e., a graph G = (V ,T) with set of nodes
V , and set of edges T . All the possible subassemblies can be compactly
represented as connected subgraphs of G.

There is a set of conjunctive constraints given in the input (while addi-
tional constraints will be generated during search), each of which prescribes
that a subassembly W ⊂ V must be joined before executing task t.

Each assembly task requires two types of resources: a fixture and a tool,
which must be selected from the predefined sets F and Z , respectively. Each
fixture f ∈ F can grasp one specific part vf directly. Moreover, there is a
maximal subassembly Vf with vf ∈ Vf defined for f that it can hold indirectly
via the grasped part. Then, for an arbitrary subassembly W , fixture f can
hold W if and only if W is connected, vf ∈ W , and W ⊆ Vf . While the
two parts joined by an assembly task are not differentiated in the input,
the selection of the fixture in the assembly plan distinguishes the base part
held (potentially indirectly, via another grasped part) in the fixture from the
moved part. In contrast, the set of tools applicable for task t ∈ T is given in
the input, and it is denoted by Zt.

The processing time of task t is denoted by ρt, whereas df and dz stand for
the changeover times related to fixture f ∈ F and tool z ∈ Z , respectively.
It is noted that in reality, the processing and changeover times depend on
the layout of the assembly cell (e.g., the location of the parts storage and
the fixture), the applied resources (e.g., the robot), and the assembly path.
Since assembly planning precedes cell configuration in the planning workflow

4

considered, it is reasonable to assume estimated processing times given in the
input. Many papers in the literature overcome the difficulty caused by the
mutual interrelation of assembly planning and cell configuration by simply
minimizing the number of changeovers ; the proposed approach can be used
in this way by using unit processing and changeover times.

Monotonous binary (i.e., two-handed) assembly is assumed, i.e., each as-
sembly task fixes the relative position of the two involved parts as required
in the assembled final product, and this connection cannot be untied later.
Hence, the initially separated parts are gradually built into larger subassem-
blies, until they are finally joined in one final product. Consequently, beyond
assembling the directly involved two parts, an assembly task also connects
all parts in the two corresponding subassemblies.

An assembly plan consists of a subset of tasks that constitute a spanning
tree of G, and a total ordering of the selected tasks. The assembly plan
is feasible if there is a technologically and geometrically feasible (explained
below) way of building the product using the given sequence of tasks so
that no collision occurs during the execution of any of the assembly tasks.
The assembly planning problem consists in finding a feasible assembly plan
which minimizes the total assembly time, which contains the fixture and tool
changing times plus the total processing time of the selected tasks.

The computed assembly plan must be geometrically and technologically
feasible, i.e., it has to be ensured that each selected task can be realized by
a motion of the involved objects, including parts and tools, that respect the
technological specification of the given task and does not incur any collisions.
The characterization of the assembly motions is presented in Section 6, with
further details of the applied technological and geometrical models in the
Appendix.

2.1. Illustrative example

Throughout the paper, the proposed approach will be illustrated on the
assembly planning problem of the standard ball valve product shown in Fig-
ure 1. An optimal assembly plan for this product is displayed in Figure 2.
The product is built from 13 individual parts. After merging the four identi-
cal screws that join the cover to the house into a composite part, the model
contains 10 parts and 11 tasks. Hence, the liaison graph of the product con-
tains 11 edges (11 tasks), out of which 9 edges (9 tasks) that constitute a
spanning tree must be selected for inclusion in the assembly plan. An exam-
ple of alternative tasks is that the O-ring that ensures sealing between the

5

Figure 1: Illustrative example: ball valve product.

house and the cover can be placed either on the cover (see Tasks 3 in Fig-
ure 2) or on the house, before the house and the cover themselves are joined.
A part of the precedence relations between the tasks must be inferred by
geometrical reasoning: for example, the two inlets must be placed on the
ball (Tasks 1 and 2) before inserting the ball into the house (Task 6).

However, finding a feasible plan is just one part of the challenge; beyond
that, a plan that minimizes the total assembly time is looked for. This re-
quires considering the resources and the corresponding changeover times as
well. In this example, four different fixtures can be applied: two fixtures
can grasp the cover or the house (two physical fixturing devices with given
geometry), or the human operator can hold one of the plastic inlets while
putting the ball and the other inlet on it (two virtual fixtures without a fixed
geometry, see Tasks 1 and 2 in Figure 2). The two available tools are the
human hand (without geometry) for placing and insertion tasks, and a screw-
driver (with geometry) for screwing tasks. One interesting question is how
the number of changeovers can be reduced while respecting the precedence
relations stemming from geometry.

3. Literature review

3.1. Assembly planning

The main challenge of assembly planning lies in performing efficient opti-
mization to maximize assembly system performance while ensuring that the
complex technological and geometrical constraints are satisfied. Classical

6

Init Task 1 Task 2 Task 3 Task 4

F: Hand F: Hand F: Fixt1 F: Fixt1

T: Hand T: Hand T: Hand T: Hand

Task 5 Task 6 Task 7 Task 8 Task 9

F: Fixt1 F: Fixt2 F: Fixt2 F: Fixt2 F: Fixt2

T: Hand T: Hand T: Hand T: Screwdriver T: Screwdriver

Figure 2: Optimal assembly plan for the ball valve product. Fixtures (F) and tools (T)
are shown only below the figures, without geometries.

7

approaches to assembly planning aim to explore geometrical and techno-
logical constraints before search, and then look for a solution that respects
the given constraints. An approach that generates all geometrically feasible
task sequences for a product is presented in (De Fazio and Whitney, 1987).
In (Wilson and Latombe, 1994) and (Romney et al., 1995), the concept of
non-directional blocking graphs (NDBG) is introduced to characterize the
blocking relations between pairs of parts. Given the NDBG, polynomial-
time graph algorithms can be applied to extract geometrically feasible as-
sembly sequences. These sequences can be evaluated later using various
performance measures related to the efficiency and ease of the assembly pro-
cess. In (Thomas et al., 2003), the stereographical projections of parts are
used to generate constraints on the assembly sequence, and then to build the
AND/OR graph representation that contains all feasible assembly sequences.
A more sophisticated approach to generating precedence constraints from
geometrical models is proposed in (Morato et al., 2013). However, product
geometry can be translated efficiently into precedence constraints between as-
sembly tasks only in the presence of strict assumptions. In most of the above
papers, assembly motions correspond to a linear translation of the part, typ-
ically, along one of the few given direction vectors. With this assumption,
it is sufficient to perform pairwise collision detection between parts along
a few candidate linear motions, instead of solving a complex path planning
problem involving different subsets of the parts. Moreover, none of the above
approaches capture resource requirements.

When geometrical and technological feasibility cannot be fully ensured
by constraints generated in a preprocessing phase, the applicable approach
is solving the planning problem iteratively, with constraints added during
search based on the evaluation of earlier plan candidates. For this purpose,
it is typical to separate the so-called macro-level planning problem, which is
the combinatorial optimization problem responsible for task sequencing and
resource assignment, from the micro-level problem related to evaluating the
plans considering detailed geometrical and technological modes.

A Benders decomposition approach to integrating macro- and micro-level
planning was presented in (Kardos et al., 2016, 2017). The proposed method
departs from a so-called feature-based representation of the assembly process
to define technologically correct execution of the assembly task, and uses
mixed-integer linear programming (MILP) to minimize the total assembly
time, considering fixture and tool changeovers as well. In case of any collision
identified on the micro level, a disjunctive precedence constraints is fed back

8

to the macro level. The significant limitation that the liaison graph had to
be a tree was lifted in a subsequent paper (Kardos et al., 2020), where CP
was used to solve the macro-level planning problem. Again, the subproblem
provided conjunctive constraints for the macro level, but this could lead to
a high number of iterations for intricate cases.

In order to speed up the search for geometrically feasible assembly se-
quences, (Rodŕıguez et al., 2019) proposed iteratively refined simulations,
starting with free-flying parts and ending with a detailed simulation of the
complete robotic assembly system. The solution space of sequence planning
is discovered using a simple depth-first search, and any collision detected
during simulation is propagated to assembly sequence planning to prune the
search tree. In (Hui et al., 2009), a meta-heuristic that combines a genetic
algorithm with ant colony optimization is presented for solving the assembly
sequencing problem, considering also the required resources. The validity of
the computed sequences is checked by interactive path planning, with the
support of swept volumes generated by a B-rep filling algorithm. If the path
found for an assembly task is not satisfactory, either due to collisions or its
difficulty, a feedback is provided to the macro level to modify the sequence.
In (Le et al., 2009), the authors look at the assembly planning problem from
the path planning point of view, and iterate an ML-RRT algorithm (Cortés
et al., 2008), which is a variant of the classical RRT path planner (Lavalle
and Kuffner, 2000), until it removes all parts one-by-one from the assembly.
Yet, the approach does not capture resource requirements, and settles for
finding an arbitrary feasible, collision-free assembly sequence. Focusing on
assembly/disassembly for maintenance, the paper (Hassan and Yoon, 2010)
proposes an integrated approach to assembly sequence and path planning.
On the macro level, a genetic algorithm aims to minimize a criterion com-
posed of the number of gripper changes, number of orientation changes, and
path length. On the micro level, a potential field path planner is used to com-
pute collision-free (dis)assembly paths. At the end, the computed sequences
and paths are validated in a virtual environment with haptic control.

Typical optimization criteria are minimizing the number of changeovers
(including the changes of orientations, tools, or assembly task types), the
assembly time, the tool travel distance, or the assembly cost (Bahubalen-
druni and Biswal, 2016). Apart from early models that solve assembly plan-
ning as a graph search problem, all formulations are NP-hard, and hence,
(meta-)heuristics, soft computing techniques, and mathematical program-
ming approaches are frequently applied for solving them (Bahubalendruni

9

and Biswal, 2016; Rashid et al., 2012). Recent surveys on solution methods
include (Jiménez, 2013; Hu et al., 2011; Bahubalendruni and Biswal, 2016;
Neb, 2019).

3.2. Logic-based Benders decomposition

This paper applies a Logic-based Benders decomposition (LBBD) ap-
proach to solving the assembly planning problem. LBDD, introduced by
Hooker and Ottosson (2003), generalizes Benders decomposition (Benders,
1962; Geoffrion, 1972) by replacing the linear programming dual used in the
classical method with an “inference dual”. By solving the “dual problem”,
new inequalities, so-called Benders cuts , are computed that exclude superflu-
ous solutions. LBBD has been successfully applied to a host of applications,
see (Hooker, 2011, 2019). The most typical ones are planning and scheduling
(Hooker, 2007; Roshanaei et al., 2017), facility location (Fazel-Zarandi and
Beck, 2012; Wheatley et al., 2015), route planning (Kloimüllner and Raidl,
2017; Fachini and Armentano, 2020), to name but a few examples. Unlike in
most of the applications, in our case the constraints derived from the infer-
ence dual of the assembly planning problem will take the form of disjunctive
constraints , which cannot be modeled by a single linear inequality in general.
Such a constraint takes the form∨

i∈Γ

(x ∈ Ci),

where Γ is a finite index set, the Ci are sets of possible values, and the
constraint prescribes that x must be a member of one of these sets. (Balas,
1975, 1979, 1998) pioneered mathematical programming with disjunctive con-
straints (MP-DC). MP-DC has gained a tremendous interest over the last
decades, for an overview we refer to the textbook (Balas, 2018) (when the
Ci are polyhedra, and besides disjunctive constraints, there are only linear
inequalities in the program), and to the review paper (Grossmann, 2002) in
case of mixed-integer nonlinear programs. In this paper we consider a special
case, where each term x ∈ Ci of a disjunction can be described by a single
linear inequality, and we will simply aggregate these constraints into a single
inequality, see Section 4.8.

4. Formulation by a mixed-integer linear program

In this section, we present a mixed-integer linear program for modeling
the assembly planning problem. Recall that the liaison graph is G = (V ,T),

10

Table 1: Notation

V set of parts (nodes of the liaison graph G)
T set of tasks (edges of the liaison graph G)
POS set of positions
Z set of tools
F set of fixtures

xtp assignment variables (T → POS)
qprs connection variables (if qprs = 1 then Gp(x) contains an r − s path)
τpz tool assignment variables (Z → POS)
φpf fixture assignment variables (F → POS)
ctoolp tooling cost variables (POS → R)
cfixtp fixturing cost variables (POS → R)

where node set V corresponds to the parts, and edge set T represents the
tasks, thus, in order to ease our notation, we use terms part and node, as
well as task and edge interchangeably.

Recall that an assembly plan (aside from tools and fixtures) can be rep-
resented by a selection of n := |V | − 1 tasks along with a bijective mapping
of the selected tasks to positions from the set POS := {1, . . . , n}.

To describe a solution, we introduce the assignment variables xtp that
specify for each task t ∈ T and position p ∈ POS , whether task t is assigned
to position p (xtp = 1) or not (xtp = 0). An assignment is feasible if and only
if exactly one task is assigned to each position, and each task is assigned to
at most one position. Note that if there are more tasks than positions, then
some tasks are necessarily unassigned in any feasible assignment. Clearly,
any feasible assignment selects a spanning tree in the liaison graph G. Let
Gp(x) denote the subgraph of G containing those edges that correspond to
the tasks assigned to the first p positions by a feasible assignment x. We also
need the connection variables qprs expressing whether parts r and s belong
to the same subassembly after performing the first p tasks in the determined
sequence. Basically, we will only require qprs to be 0, if there is no r− s path
in Gp(x). Finally, to express the objective function, we will use the variables
ctoolp and cfixtp for expressing the tooling and fixturing costs for each position
p ∈ POS .

Now we are ready to describe the mathematical programming formulation
of the problem. In the objective function, we aim to minimize the total

11

assembly time, that is, the sum of processing times of the selected tasks, and
the total changeover time incurred by the tool and fixture changes at each
step:

Minimize
∑
p∈POS

ctoolp +
∑
p∈POS

cfixtp +
∑
t∈T

∑
p∈POS

ρtxpt. (1)

Subject to the constraints (to be declared in subsequent sections):

Assignment: (2a)-(2c),

Connectivity: (3a)-(3i),

Tooling and fixturing: (4a)-(4k),

Maximal subassemblies: (5),

Component limits: (6),

Graspable constraint: (7),

Conjunctive: (8),

Disjunctive: (9).

4.1. Assignment

We formulate the assignment constraints as follows:∑
p∈POS

xtp ≤ 1, for all t ∈ T (2a)∑
t∈T

xtp = 1, for all p ∈ POS (2b)

xtp ∈ {0, 1}, for all t ∈ T , p ∈ POS . (2c)

Each task can be assigned to at most one position by (2a), to each position
exactly one task must be assigned by (2b), and the xtp variables are binary
by (2c).

12

4.2. Connectivity constraints

The purpose of the connectivity constraints is to ensure that qprs = 0 for
some p ∈ POS , and r, s ∈ V if there is no r − s path in Gp(x). This is easy
to guarantee by linear constraints if the liaison graph is a tree, see (Kardos
et al., 2017), but it becomes a challenging modeling problem if G contains
one or more cycles. The connectivity constraints (for general G), will be
declared in several steps. We start with the following set:

qprs = qpsr, for all p ∈ POS , r, s ∈ V (3a)

qnrs = 1, for all r, s ∈ V (3b)

q0rs = 0, for all r, s ∈ V : r 6= s (3c)

qprr = 1, for all p ∈ POS ∪ {0}, r ∈ V (3d)

qprs ∈ {0, 1}, for all p ∈ POS ∪ {0}, r, s ∈ V . (3e)

Constraint (3a) expresses the symmetry of the variables. Constraint (3b)
requires that all of the parts must be connected after the final, nth step. In
the beginning, distinct parts are unconnected due to constraint (3c), however,
by constraint (3d), any single part is always connected with itself.

Consider the liaison graph G. Note that Gp(x) contains an r − s path if
and only if each r − s cut [S, S̄] of G contains at least one edge of Gp(x).
Therefore, we need qprs to be zero, if there is an r− s cut containing no edge
of Gp(x). If G is a tree, then Gp(x) is a forest, and the latter condition is
easy to verify since each r− s cut corresponds to an edge of the unique r− s
path in G. However, if G has biconnected components, then the number
of r − s cuts can be large. Let BCG be the set of biconnected components
of G, and for an edge e ∈ E(G), let BG(e) ∈ BCG be the unique biconnected
component that contains e, and for a node v ∈ V (G), let BG(v) ⊆ BCG be
the set of biconnected components that contain v. The cardinality |B| of a
biconnected component B ∈ BCG is the number of its nodes. It is well-known
that one can determine the set BCG in linear time using a depth-first-search
procedure (Hopcroft and Tarjan, 1973). In Figure 3 we depict a graph and
its biconnected components.

Consider a biconnected component B ∈ BCG in the form of B = G[S] =
(S, σ(S)) for a certain subset S ⊆ V (G). Let K be the set of all inclusion-
wise minimal cuts of G[S], and Krs ⊆ K be the set of all inclusion-wise
minimal r − s cuts of G[S]. For each cut C ∈ K and position p ∈ POS
we introduce a binary variable yp,C with the following meaning: if yp,C = 1

13

r

s
B

rB

sB

Figure 3: Example for a graph and its biconnected components. Biconnected components
are indicated with dashed boundary. Nodes rB and sB are the first and last nodes,
respectively, that belong to biconnected component B when traversing along a path from
node r to node s.

then C contains at least one edge of Gp(x). By this, for each biconnected
component B = (S, σ(S)) we add the following constraints to the model:

yp,C ≤
p∑
i=1

∑
t∈[X,X̄]

xti, for all p ∈ POS, C = [X, X̄] ∈ K (3f)

qprs ≤ yp,C , for all p ∈ POS, r, s ∈ S : r 6= s, C ∈ Krs (3g)

Constraint (3f) ensures that yp,C = 0 holds if C ∩ E(Gp(x)) = ∅, and thus
qprs = 0 holds for all nodes r and s such that C is an r − s cut due to
constraint (3g).

The set of inclusion-wise minimal cuts of a graph can be enumerated in
linear time per cut (Tsukiyama et al., 1980). We also remark that as long
as we only have lower bounds on variables qprs in the model, it suffices to
require qprs to be 0 if there is no r − s path in Gp(x).

Now we turn to paths in the liaison graph. Assume that parts r and s
belong to different biconnected components of the liaison graph G, that
is, BG(r) ∩ BG(s) = ∅. Consider an arbitrary r − s path P in G. Let
Ẽrs := {e ∈ E(P) : |BG(e)| = 2} be the set of edges of the path that be-
longs to a biconnected component which consists of a single edge, and let
B̃rs := {BG(e) ⊆ BCG : e ∈ E(P), 3 ≤ |BG(e)|} be the set of biconnected
components with at least three nodes that the path traverses (i.e., uses at
least one edge from it). Note that the definitions of Ẽrs and B̃rs do not
depend on path P but only on r and s. Traversing along path P from node r
to node s, for each B ∈ BCG let rB be the first and sB be the last node

14

that belongs to the component, respectively. Note that rB = sB might hold.
For the designated nodes r and s in Figure 3, the corresponding sets Ẽrs
and B̃rs contain three edges, and one component, respectively, moreover, for
component B nodes rB and sB are also depicted. For a later use we also
define the set K̃rs :=

⋃
B∈B̃rs

KrB ,sB of cuts.
For each position p ∈ POS and for each pair of parts r, s ∈ V such that

BG(r) 6= BG(s) we have the following constraints:

qprs ≤
p∑
i=1

xti, for all t ∈ Ẽrs (3h)

qprs ≤ qp,rB ,sB , for all B ∈ B̃rs (3i)

Constraints (3h) and (3i) ensure that qprs = 0 if there is no r − s path in
Gp(x).

Note that we do not require qprs to be 1 if there exists an r − s path in
Gp(x) since it would demand a large number of constraints, and due to our
preliminary experiments it makes the problem hard to solve. Thus, upper
bounds on variables qprs cannot be applied directly, but the biconnected
decomposition described above can be used. That is, for example, instead of
constraint qprs ≤ 0, the following inequality can be used:

∑
t∈Ẽrs

p∑
i=1

xti +
∑
C∈K̃rs

yp,C ≤ |Ẽrs|+ |K̃rs| − 1.

15

4.3. Tooling and fixturing

In order to express the constraints regarding tools and fixtures, we add
the following constraints to the model:∑

z∈Z

τpz = 1, for all p ∈ POS (4a)

τpz ∈ {0, 1}, for all p ∈ POS ∪ {0}, z ∈ Z (4b)

τ0z = 0, for all z ∈ Z (4c)∑
f∈F

φpf = 1, for all p ∈ POS (4d)

φpf ∈ {0, 1}, for all p ∈ POS ∪ {0}, f ∈ F (4e)

φ0f = 0, for all f ∈ F (4f)

xtp + τpz ≤ 1, for all p ∈ POS , t ∈ T , z ∈ Z \ Zt
(4g)

xtp + φpf − qp−1,vf ,a − qp−1,vf ,b ≤ 1,
for all p ∈ POS , f ∈ F
t = 〈a, b〉 ∈ T .

(4h)

Constraints (4a) and (4d) ensure that for each position exactly one tool and
exactly one fixture must be assigned. Inadmissible task-tool assignments are
prohibited by constraint (4g). With constraint (4h) we ensure that a task
can be used in a fixture only if the grasped part of the fixture is in one of
the two subassemblies which are connected by the task.

Recall that df and dz denote the sequence independent changeover time
for fixture f and tool z, respectively. We add the following constraints to the
model:

cfixtp ≥ df (φpf − φp−1,f), for all p ∈ POS , f ∈ F (4i)

ctoolp ≥ dz(τpz − τp−1,z), for all p ∈ POS , z ∈ Z (4j)

cfixtp ≥ 0, ctoolp ≥ 0, for all p ∈ POS . (4k)

Clearly, the fixture changeover time variable cfixtp is forced to take a value of
at least df if and only if φpf = 1, while φp−1,f = 0, and in an optimal solution
equality holds. An analogous statement holds for the tool changeover time
variables.

16

4.4. Maximal subassemblies

For a maximal subassembly Vf that can be held in fixture f we add the
following constraints to the model:

φpf +
∑

t∈Ẽs,vf

p∑
i=1

xti +
∑

C∈K̃s,vf

yp,C ≤ |Ẽs,vf |+ |K̃s,vf | for all p ∈ POS , s ∈ V \ Vf .

(5)

These constraints are the transcription of constraints φpf + qp,vf ,s ≤ 1 ap-
plying the technique described at the end of Section 4.2. That is, if fixture f
is used in position p (φpf = 1), then no part s out of Vf can be assembled
with the grasped part vf in the first p positions (qp,vf ,s = 0 for all s ∈ V \Vf).
Note that this constraint does not forbid to join prohibited parts (i.e., one
part from Vf and one from V \ Vf) in fixture f in the pth position.

4.5. Component limits

Clearly, from any connected component (S, σ(S)) at most |S| − 1 edges
can be selected. We add the following constraints to the model:∑

t∈σ(S)

∑
p∈POS

xtp ≤ |S| − 1 for all B = (S, σ(S)) ∈ BCG. (6)

Note that it is not necessary to add these constraints to the model (i.e.,
the model is also valid without these constraints), however, due to our pre-
liminary experiments they strengthen the model.

4.6. Graspable constraint

Clearly, a task t = 〈a, b〉 ∈ T can be performed only if either part a or b is
already connected to a graspable part (that is, a part which can be grasped
by a fixture). Let V grasp := {v ∈ V : v = vf for some f ∈ F} be the set of
graspable parts. We add the following constraints to the model:

xtp ≤
∑

u∈V grasp

(qp−1,u,a + qp−1,u,b) for all t ∈ T , p ∈ POS . (7)

These constraints are satisfied by all feasible solutions, and they are added
to the model to strengthen the LP relaxation.

17

4.7. Conjunctive constraints

A conjunctive constraint is formalized as 〈t ⊕ W 〉 where t ∈ T and
W ⊂ V , and it prescribes that task t can be performed in some position
of the assembly sequence only if the parts in W are already joined by some
assembly tasks in positions 1, . . . , p−1. To express this constraint, we choose
and fix a part r ∈ W , and add the following inequalities to the model:

xpt ≤ qp−1,r,s, for all p ∈ POS , s ∈ W \ {r}. (8)

We expect to generate all such constraints in an offline preprocessing
phase (using geometric reasoning), and not during search. Note that these
constraints can be aggregated into a single one, however, our preliminary
experiments showed that (8) is more efficient.

4.8. Disjunctive constraints

A disjunctive constraint is used to express that the assembly sequence
must satisfy at least one from a couple of logical conditions. It is formalized
as 〈t 	 W1,W2, z, f〉 with t ∈ T , W1,W2 ⊆ V , z ∈ Z , f ∈ F , where
task t = 〈a, b〉 joins parts a and b. The constraint states that either task t is
not executed at all, or:

• part a is not connected to at least one of the parts in W1 before the
execution of task t, or

• part b is not connected to at least one of the parts in W2 before the
execution of task t, or

• tool z is not used for the execution of task t, or

• fixture f is not used for the execution of task t.

Some fields of the constraint can be left empty (but task t is always specified),
which will be denoted by W1 = ∅ or z = ∅, etc. Hence, 〈t 	 W1, ∅, ∅, f〉
and 〈t 	 ∅, ∅, z, f〉 are all valid constraints. In such cases, the corresponding
terms of the disjunction are ignored. The number of disjunctive constraints
is usually exponential in the number of parts, fixtures, and tools. Therefore,
we only generate violated constraints during the search, see Section 5.

18

For a disjunctive constraint 〈t 	 W1,W2, z, f〉 with t = 〈a, b〉, we add
the following linear constraint to the model for all p ∈ POS :

xtp + τpz + φpf +
∑
w∈W1

 ∑
u∈Ẽaw

p−1∑
i=1

xui +
∑

C∈K̃aw

yp−1,C

+

+
∑
w∈W2

 ∑
u∈Ẽbw

p−1∑
i=1

xui +
∑
C∈K̃bw

yp−1,C

 ≤ 2 + |Ẽaw|+ |K̃aw|+ |Ẽbw|+ |K̃bw|.

(9)
If task t is not executed at all, then xtp = 0 for all p ∈ POS , and thus

constraint (9) holds. Otherwise, if task t is executed, say in position p, i.e.,
xtp = 1, then the rest of the left-hand side can be at most 1 + |Ẽaw| +
|K̃aw| + |Ẽbw| + |K̃bw|, that is, either τpz = 0 (i.e., tool z is not used during
execution of t), or φpf = 0 (i.e., fixture f is not used during execution of t),
or

∑
w∈W1

(
∑

u∈Ẽaw

∑p−1
i=1 xui+

∑
C∈K̃aw

yp−1,C) ≤ |Ẽaw|+|K̃aw|−1 (i.e., part a
is not connected to at least one of the parts in W1 before the execution of t),
or

∑
w∈W2

(
∑

u∈Ẽbw

∑p−1
i=1 xui+

∑
C∈K̃bw

yp−1,C) ≤ |Ẽbw|+ |K̃bw|−1 (i.e., part b
is not connected to at least one of the parts in W2 before the execution of t).

Note that if some field of the constraint is left empty, then the corre-
sponding expressions are omitted and the right-hand side is modified. For
example, the constraints corresponding to a disjunctive constraint of the form
〈t 	 ∅, ∅, z, f〉 are xtp + τpz + φpf ≤ 2 for all p ∈ POS . Also note that if
at least one of the fields W1 or W2 are given, then constraint (9) is omitted
for position 1, since it is undefined and the disjunction is always satisfied in
that case.

4.9. Solving the MILP

The MILP formulation presented above can be solved by arbitrary MILP
solver. Yet, in order to improve the default branch-and-cut procedure of the
commercial solver, several problem-specific branching strategies were experi-
mented. Surprisingly, the best results were yielded by a simple strategy that
assigns fixtures to given positions. That is, in each node of the search tree,
the first position p without an assigned fixture is determined (i.e., there is
no fixture f such that φpf is fixed to 1). Then, |F | branches are created
by assigning the ith fixture to position p on the ith branch, i.e., fixing φpfi
to 1. When for each position there is an assigned fixture, the default branch-

19

ing rule of the solver is used. The evaluation of this branching strategy is
presented in the computational experiments.

5. Logic-based Bender’s decomposition

Since the number of disjunctive constraints that may have to be added
to the mathematical program (1)-(8) can be exponential, and identifying all
of them may be an arduous task, we apply logic-based Bender’s decompo-
sition to solve the above problem. Initially, the master problem consist of
the constraints (1)-(8), and the disjunctive constraints (9) are added in grad-
ually. This means that initially, geometric and technological feasibility are
neglected.

The sketch of the solution procedure is depicted in Figure 4. Once an
assembly plan is built by solving the master problem, the subproblem checks
whether this assembly plan admits a feasible, collision-free realization. If
not, then one or more constraints violated by the current assembly plan are
generated and added to the master problem, and the procedure is repeated
until no violated constraint is found. Since the master problem is solved
to optimality in each iteration, the final, collision-free assembly plan is also
optimal for the entire assembly problem.

To see this, we call the subproblem solver complete if for any assembly
plan (x∗, φ∗, τ ∗, q∗) satisfying (1)-(8) and those disjunctive constraints (9)
that are already added to the master problem, if and only if the plan is
geometrically or technologically infeasible, it returns a disjunctive constraint
〈t 	 W1,W2, z, f〉 that is violated by the current plan, but should be satisfied
by all feasible plans.

Proposition 1. If the subproblem solver is complete, then the above proce-
dure terminates in a finite number of steps with an optimal solution for the
assembly planning problem.

Proof. Since the constraints returned by the subproblem solver must be re-
spected by all assembly sequences (this follows from the completeness of the
subproblem solver), the procedure terminates with an optimal solution pro-
vided that in the last iteration, an optimal solution is found for the master
problem. The finite number of steps is ensured by the fact that the number
of distinct disjunctive constraints is finite.

The subproblem solver does work on a geometric representation of the
components, and that of the assembly plan. Hence, it solves the inference

20

Solve
master problem

Build
initial master problem

Result?

Problem is infeasible

Infeasible

Solve subproblem

Feasible (optimal) solution

Collision-free?
Yes Problem is solved

(to optimality)

Add feasibility cuts to
the master problem

No

Figure 4: Sketch of the LBBD solution approach.

dual , a method initiated by Hooker and Ottosson (2003). While Hooker
and Ottosson bound the objective function value of the master problem, in
our application the objective function value is influenced only indirectly by
the disjunctive cuts, i.e., they can exclude integer solutions of the master
problem, which represent technologically infeasible assembly sequences.

6. Geometrical reasoning for solving the inference dual

6.1. Overview

In the proposed decomposition approach, the inference dual investigates
the geometrical feasibility of the assembly plans by checking if the plans
can be realized without any collisions. Validation is performed separately
for each task in the fully specified assembly plan. For an arbitrary static
configuration of the objects in the 3D space, potential collisions or distances
between pairs of objects can be queried using open source collision detec-
tion libraries, such as the Proximity Query Package (PQP) (Larsen et al.,
2000) or the Flexible Collision Library (FCL) (Pan et al., 2012). Collision
detection for static configurations offered directly by these libraries has been
extended to checking continuous motions using a conservative advancement
(CA) approach (Schwarzer et al., 2004).

21

Figure 5: Noteworthy positions of the moved part during the execution of a task: the
remote (red), near (yellow), and final (transparent with wireframe) position of the inlet
relative to the ball in the ball valve assembly.

The feature-based assembly model defines the following important relative
positions of the base and the moved subassemblies during their motion (see
Fig. 5):

• The final position PF is the relative position of the two parts or sub-
assemblies in their assembled state.

• The near position PN is a relative position near to the final position
without touching or colliding geometries. During the execution of the
corresponding task, the subassembly is moved from PN to PF by a
linear translation defined by the technological parameters of the corre-
sponding task.

• The remote position PR is a virtual position of the moved subassembly
far from the base subassembly and the fixture in the open space where
the collision-free motion of the moved subassembly can be guaranteed.
Since assembly planning precedes workstation layout design in the pro-
posed workflow, the true starting position of the moved subassembly,
such as a storage location, is not known. Hence, the virtual remote
position will be used instead.

From now on, the fully defined linear motion from PN to PF is called the
feature motion, whereas the motion from PR to PN , which is not determined
in the assembly task, is named approach motion.

Geometrical validation takes place in the configuration space of the rel-
ative positions of the moved subassembly to the base subassembly, denoted

22

by C. Let Cfree denote the set of collision-free configurations. A fully defined

linear motion
−−→
P1P2 is said to be collision-free, denoted by

−−→
P1P2 ∈ Cfree, if it is

fully located in Cfree, i.e., P ′ ∈ Cfree for any P ′ = (1−t)P1 +tP2 with t ∈ [0, 1].
If there exists no predefined motion between two end points P1 and P2,

then P1 and P2 can be connected without any collisions, denoted by

P1P2 ∈
Cfree, if there exists a finite sequence of way points {q1, q2, ..., qk} with q1 = P1

and qk = P2 such that −−−→qiqi+1 ∈ Cfree for all i = 1, ..., k − 1.
Now, a task is collision-free if and only if for the above defined positions

it holds that
−−−→
PNPF ∈ Cfree and

PRPF ∈ Cfree. The following two subsections

present the algorithms to verify these two conditions.

6.2. Validation of the feature motion

The validation of the fully defined feature motion
−−−→
PNPF in a given as-

sembly task consists in (1) identifying the base and moved subassemblies in
the task from the assembly sequence; (2) positioning the fixture geometry
w.r.t. the base, as well as the tool geometry w.r.t. the moved subassembly;

and (3) performing collision detection for
−−−→
PNPF using the above CA method.

In case of any collision, all colliding pairs of objects are unambiguously iden-
tified. Each colliding pair consists of one base object (a part or the fixture)
and one moved object (a part or the tool).

In case of collisions, the algorithm generates a disjunctive constraint 〈t 	
W1,W2, z, f〉 for each colliding pair of objects as follows (see also Section 4.8
and Eq. (9)):

• Task t is the task that incurs a collision.

• If the colliding base object is part w1, then W1 = {w1} and f = ∅;
otherwise, the colliding base object is fixture f1, which incurs W1 = ∅
and f = f1.

• Similarly, if the colliding moved object is part w2, then W2 = {w2} and
z = ∅; otherwise, the colliding moved object is tool z1, which incurs
W2 = ∅ and z = z1.

The generated constraint expresses that at least one of the colliding ob-
jects, w1, w2, f1, or z1 must not be present during the execution of task
t.

Finally, in order to speed up the validation of feature motions, caching
is applied: for each task and each pair of objects, successful collision checks

23

(i.e., tests resulting in no collision) are stored in a cache. In case the same
pair of objects in the same task is investigated in another plan later during
subsequent iterations, this precludes the repeated execution of the collision
test. Observe that there is no need to store the results of unsuccessful collision
tests, since the generated disjunctive constraint will prevent the repeated
occurrence of the same collision.

6.3. Validation of the approach motion

In contrast to the feature motion, there is no predefined motion available

for the approach motion

PRPF . Accordingly, the validation of the approach
motion requires solving a path planning problem, where the base subassem-
bly and the fixture define the obstacles for moving the ensemble of the moved
subassembly and the tool, represented as a single 3D solid object. For solv-
ing this path planning problem, an implementation of the Rapidly-exploring
Random Trees (RRT) (Lavalle and Kuffner, 2000) algorithm is applied in
the configuration space of the relative positions of the base and the moved
subassemblies. RRT is known to be probabilistically complete, i.e., given
sufficient computation time, it finds a solution with a probability converging
to one. On the other hand, RRT is unable to provide a proof of infeasibility.
Hence, search is stopped if a given iteration limit is reached, in which case the
approach motion is regarded as colliding, and a single disjunctive constraint
〈t 	 W1,W2, z, f〉 is generated as follows (see also Section 4.8 and Eq. (9)):

• Task t is the task incurring a collision.

• Part sets W1 and W2 contain the complete base and moved subassem-
blies.

• Fixture f and tool z are the resources assigned to task t in the plan.

The generated constraint states that task t cannot be executed with this
configuration of the base and moved subassemblies (or with a superset of
these subassemblies), by using the given fixture and tool.

It is highlighted that in almost all cases, the moved subassembly can
be translated directly between the remote and the near positions. This di-
rect translation is tested before performing actual RRT search. For typical
assemblies, this greatly reduces the time required for the validation of the
approach motion. Since path planning is a computationally demanding prob-
lem, approach motions are validated only if all feature motions in the plan
are feasible. Also, validation is interrupted upon the first failure.

24

The generated constraint could be strengthened by executing path plan-
ning problems with reduced subassembly configurations. One straightfor-
ward approach can be trying to eliminate parts one-by-one from the two
subassemblies using direct translation. Nevertheless, collisions during the
approach motion were atypical for all the investigated industrial use cases
(see Section 7). Therefore, the strengthening of the constraints shall be the
focus of future research after identifying applications where this requirement
is relevant.

6.4. Discussion on the generated disjunctive constraints

The above disjunctive constraints aim at avoiding a collision by formu-
lating the cause of the collision in terms of part connectivity and resource
assignments. For a feature motion, a collision can be characterized by the
triplet of the involved task, the base object, and the moving object. It can
be observed that the disjunctive constraint 〈t 	 W1,W2, z, f〉, as defined
in Section 6.2, provides a necessary and sufficient condition for avoiding
the particular collision, as it expresses that upon the execution of the given
task, either the colliding base object or the colliding moving object must
not be present. In contrast, the disjunctive constraints proposed in (Kardos
et al., 2020) focus on the precedence relations between the tasks (edges) that
connect the colliding parts (vertices) in the liaison graph in the particular
master solution. This is a necessary, but not sufficient condition for avoiding
the given collision: if the liaison graph contains cycles, then the two colliding
objects can be connected by multiple paths, and the disjunctive constraint
of (Kardos et al., 2020) precludes only one of those paths. Consequently,
(Kardos et al., 2020) can require as many iterations to prevent a collision as
the number of paths between the two involved vertices, whereas the proposed
approach generates a disjunctive constraint that eliminates the collision in a
single iteration. If the liaison graph is a tree, then the two approaches are
equivalent. Moreover, both types of feasibility cuts are definitely stronger
than a classical no-good cut that excludes only a specific task sequence with
a specific resource assignment.

For collisions during the incompletely defined approach motion, the dis-
junctive constraint proposed in Section 6.3 is a necessary, but not sufficient
condition for avoiding future collisions during the execution of a specific task,
since specific parts or resources whose presence results in geometrical infeasi-
bility cannot be identified. Yet, the proposed constraints on part connectivity

25

and resource assignment are definitely stronger than the earlier cuts of (Kar-
dos et al., 2020) that preclude only a subset of the task sequences that realize
the given connectivity status.

7. Experimental evaluation

Experimental evaluation investigated two questions: the applicability and
effectiveness of the overall planning approach in industrial case studies, and
the computational efficiency of the disjunctive programming approach to
solve the Benders master problem on a large set of randomly generated
benchmark instances of different sizes. For the sake of these experiments, the
proposed models and algorithms were implemented in a prototype planning
system. The master problem solver was implemented in the C++ program-
ming language using LEMON1 for graph algorithms, and the callable library
of FICO Xpress2. The subproblem solver was implemented in C++ using
the Proximity Query Package (PQP) of (Larsen et al., 2000) for collision de-
tection and OpenGL visualization. Part geometries were available in triangle
mesh models, which were parsed using the Assimp model loader3.

The performance of the proposed solver was also compared to the CP
approach adapted from (Kardos et al., 2020). The adaptation of the prob-
lem model involved taking the sum of the tool and fixture changeover times
instead of their maximum in the objective (1); replacing the original weight
limit for the fixtures with the maximal subassemblies constraint (5); and us-
ing the stronger disjunctive cuts on part connectivity proposed in this paper
(9) instead of the precedence constraints of (Kardos et al., 2020). The CP
approach was implemented in MiniZinc constraint modelling language4 using
Google OR-Tools CP solver5. Since the performance with the most recent
version 9.0.9048 (9.0, shortly) of OR-Tools is remarkably worse than what

1Library for Efficient Modeling and Optimization in Networks, version 1.3.1, https:
//lemon.cs.elte.hu/trac/lemon

2FICO Xpress Optimization, version 8.8.0, https://www.fico.com/en/products/

fico-xpress-optimization
3Open Asset Import Library, version 5.0.0, https://www.assimp.org/
4MiniZinc open-source constraint modeling language, version 2.5.5, https://www.

minizinc.org
5OR-Tools optimization suite, versions 9.0.9048 and 7.1.6720, https://developers.

google.com/optimization

26

Figure 6: Industrial case study: automotive supercharger.

could be expected based on (Kardos et al., 2020), we repeated the experi-
ments with version 7.1.6720 (7.1, shortly) used in that paper, and present
the results with both versions wherever relevant.

7.1. Industrial case studies

The applicability and effectiveness of the approach was investigated on
two real industrial sample products of medium complexity: the standard ball
valve introduced in the illustrative example in Section 2.1, and an automotive
supercharger assembly, see Fig. 6.

The supercharger assembly consists of 29 individual parts. After merg-
ing multiple elementary tasks and parts into so-called composites whenever,
by engineering considerations, those tasks and parts must be handled to-
gether (e.g., merging four parallel-axis screws that join the same parts into
a single composite part, as well as the four screwing tasks into a single com-
posite screwing task), the processed model contains 18 parts joined by 17
assembly tasks arranged in a tree-structured liaison graph (see the number
of raw/processed parts in Table 2).

Five different fixtures can be applied for the assembly process, including
an option that the human operator holds a given base part in his hand, and
uses his other hand to join the moved part. The geometrical model of these
fixtures was not available in the industrial data set, hence, they were used in
the master problem but ignored during collision detection in the subproblem
(see the total number of fixtures and fixtures with geometry in Table 2). Two

27

tools were assumed: a screwdriver for the screwing tasks, modelled as a rigid
body with a given geometry; and a human hand for placing and insertion
tasks, whose geometry could not be specified as a rigid body, and therefore,
was excluded from collision detection (see the total number of tools and tools
with geometry).

Over 1.3 million triangles were required to capture the complex geometry
of this product with a suitable resolution. A particular difficulty with this
product is that some assembly tasks exploit the flexibility of the parts (e.g.,
insulation and cable connectors) to join them. For this reason, the appropri-
ate pairs of parts had to be excluded from collision detection when checking
the corresponding task.

The reported experiments were run on a laptop computer with Intel i7
2.70 GHz CPU and 16 GB RAM under Windows 10 operating system. Ex-
perimental results are presented in Table 2. The upper part of the table
displays problem sizes, the middle part presents the number and the type of
disjunctive constraints generated by the subproblem, whereas the lower part
shows the computation times. The total solution time is divided into three
parts: subproblem time contains the total time required for collision detec-
tion, path planning, and constraint generation in all the iterations. Similarly,
master time reflects the total computation time required for solving the series
of master problems in every iteration. Model loading time is by far domi-
nated by the time of parsing the large STL geometries. Since loading time is
independent of the proposed algorithms, it is excluded from the total com-
putation time reported in the table. Moreover, master times are reported
for two versions of the master problem solver: the MILP solution approach
proposed in this paper, and the adapted version of the CP approach from
(Kardos et al., 2020) as a reference solver.

The results demonstrate that the proposed decomposition approach with
the MILP master solver could solve both case studies efficiently: the super-
charger assembly required 4 iterations and a total computation time of 31.6
seconds to find the optimal solution, which was dominated by the solution
time of the Benders master problem. During these iterations, 33 disjunctive
constraints were generated by the subproblem, mostly due to part-to-part
collisions, and partly due to tool-to-part collisions along the feature motion.
For the ball valve, the constraints generated by the subproblem in the first
iteration successfully eliminated all collisions, resulting in a feasible and op-
timal plan in the second iteration, with a very short total computation time
of 2.9 seconds (see the computed plan in Fig. 2). It is noted that other

28

Table 2: Characteristics of the industrial case studies and computational results.

Supercharger Ball valve
Num. tasks 17 11
Num. parts (raw / processed) 29 / 18 13 / 10
Num. fixtures (total / with geom.) 5 / 0 4 / 2
Num. tools (total / with geom.) 2 / 1 2 / 1
Num. triangles 1 327 738 148 546
Num. iterations 4 2
Num. disjunctive constraints 33 3
Disj. from part-part collision 26 3
Disj. from part-tool collision 7 -
Loading time [s] 12.8 1.2
Subproblem time (total) [s] 6.6 0.9
Subproblem time (per iteration) [s] 1.7 0.5
Master solver MILP CP v7.1 MILP CP v7.1
Master time (total) [s] 25.0 7183.0 2.0 2.5
Master time (per iteration) [s] 6.3 1795.8 1.0 1.3
Total computation time [s] 31.6 7189.6 2.9 3.4

types of collisions, such as collisions between a tool and a fixture or collisions
during the approach motion could also be observed in some preliminary ex-
periments, but these were atypical, since product designs and equipment
designs are formed to preclude accessibility issues if the parts are assembled
in a feasible order.

It is also stimulating to compare these results to those achieved using
a CP master solver, adapted from (Kardos et al., 2020). The two solution
approaches found equivalent master solutions in each iteration, and computa-
tion times were also comparable on the smaller ball valve problem. However,
on the more challenging supercharger problem, the CP approach required
considerably, nearly 300 times higher computation times than the proposed
MILP. Yet, these results do not contradict the findings of (Kardos et al.,
2020): there, the master solver was run with a time limit of 120 seconds
per iteration, sometimes terminating with a suboptimal solution. A poten-
tial cause of some further increase of computation time can be using the
sum instead of a the maximum of the tool and fixture changeover times in
the objective, since sum-type objectives are usually more challenging for CP
solvers. The experiments were repeated with the most recent version 9.0
of OR-Tools, but that version terminated with suboptimal solutions or no
feasible solution at all even with very high time limits.

29

7.2. Computational experiments on generated instances

Computational experiments on randomly generated instances were per-
formed in order to find the limits of the proposed MILP solution approach,
that is, to find the maximum instance size that can be solved in a reasonable
time, and to compare this solution approach to the CP approach of (Kardos
et al., 2020).

Since the computational challenge lies in solving the master problem,
and because the randomized generation of product geometries could hardly
result in realistic products, the experiments focused solely on the master
problem. This way, one problem instance corresponds to one iteration in the
complete Benders procedure. Yet, to cover all aspects that can arise during
the Benders iterations, artificially generated disjunctive constraints were also
added to the instances, corresponding to cuts computed in previous iterations
by the subproblem solver. All experiments were performed on a workstation
with an i9-7960X 2.80 GHz CPU with 16 cores, under Debian 9 operating
system using 4 threads.

Due to space limitations, a Supplementary Material is associated to the
paper at hand, which contains

• the description of the procedure for generating the instances,

• the properties of the generated five instance families,

• the evaluation of the proposed MILP approach on these instances,

• an analysis of how certain characteristics of the instances, e.g., the
number of conjunctive and disjunctive constraints affect the efficiency
of the solver,

• and the evaluation of a problem-specific branching strategy to improve
the MILP solution approach.

The main conclusions from those experiments are briefly summarized be-
low, whereas a comparison to the CP approach adapted from (Kardos et al.,
2020) is presented in detail on instances with cycles in the liaison graph.

The first four instance families, containing 10–30 parts, were generated
to investigate the effect of conjunctive and disjunctive constraints. The ex-
periments showed that conjunctive constraints have a significant impact on
computation time: while all instances without conjunctive constraints were
solved to optimality by the MILP, the solver terminated with a considerable

30

optimality gap on some instances with conjunctive constraints, with at least
26 parts, after the 7200 seconds time limit. Average gaps were between 0.40%
and 9.50%, while maximum gaps between 2.10% and 19.00% depending on
instance family and problem size. On the other hand, disjunctive constraints
have only a minor impact on computation times, implying that the solver can
be efficient even with a high number of Benders iterations, and accordingly,
with many disjunctive constraints fed back from the subproblem.

In the experiments, the problem-specific branching strategy improved sig-
nificantly the efficiency of the MILP: computation times decreased and final
gaps could also be reduced (0.00%-4.10% average gaps and 0.00%-11.5% max-
imum gaps). Finally, on instances with tree-shaped liaison graphs or very
few cycles in the liaison graph, MILP and CP yielded disparate results: the
latest version 9.0 of the CP solver hit the time limit on all instanced with
more than 15 parts. The performance of the legacy CP version 7.1 was signif-
icantly better, even comparable to the MILP on small-to-medium instances,
but it was still outperformed by the MILP. Further details are provided in
the Supplementary Material.

Below, we present in detail the comparison of the MILP and the CP
solvers on instances with cycles in the liaison graph (Family 5). In Figure 7,
the curves show the average computation time for each solver (average over
instances with the same number of parts), whereas the bars in the background
display the average number of additional edges (tasks) in the liaison graph,
i.e., |T | − (|V | − 1). The lowest bar corresponds to 2 extra tasks, while the
highest to 7 extra tasks.

The results show that MILP scales well with instance size: instances
with at most 16 parts are solved to optimality within a second, instances
with at most 23 parts in a minute. Even the largest instances with 30 parts
could be solved within 2000 seconds on average. The MILP-based approach
with the problem-specific branching strategy performs even better, namely,
on instances with at least 25 parts, this branching rule reduced solution
times significantly (for the largest instances this improvement is 74%, on
average). The latest CP version 9.0 struggles on these instances, thus, it is
tested only on instances with at most 18 parts. The legacy CP version 7.1
performed better than that, however, it is still clearly inferior to the proposed
MILP, as it could not solve to optimality any of the instances with more than
20 parts. The minimum, average and maximum optimality gaps achieved by
CP version 7.1 on these instances were 1.8%, 20.0% and 42.5%, respectively.

31

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
20 s

600 s

1,800 s

3,600 s

7,200 s

Family 5: CP-based approach (v7.1)

Family 5: CP-based approach (v9.0)

Family 5: MILP-based approach (default branching)

Family 5: MILP-based approach (problem-specific branching)

Figure 7: Results of different solution approaches on instances with cycles in the liaison
graph (Family 5).

8. Summary of main contributions

This section summarizes the main contributions made by the paper to
solving the assembly planning problem using LBBD.

• Efficient handling of cycles in the liaison graph: Allowing cycles in
the liaison graph is a substantial extension compared to the previous
model by Kardos et al. (2017), where only tree-structured liaison graphs
were considered. This enables handling alternative assembly tasks.
Although cycles were already introduced by (Kardos et al., 2020), that
paper applied a less efficient, straightforward CP-based approach to
solving the master problem. The efficiency of the proposed MILP-based
approach compared to CP-based has been illustrated in computational
experiments both on industrial problems and on generated instances.
The novel MILP-based approach solved larger instances (e.g., up to 7
extra edges instead of 3 extra edges), and it computed proven optimal
solutions in less than a minute for various problems for which CP could
not find any feasible solution at all.

• Modeling graph connectivity in the MILP: The handling of cycles in
the liaison graph necessitated introducing new, sophisticated model-

32

ing techniques for capturing the connectivity status of the graph, see
Section 4.2.

• New types of cuts from the subproblem to the master problem: In both
previous papers (Kardos et al., 2017) and (Kardos et al., 2020), the
disjunctive constraints fed back from the subproblem to the master
problem express generalized precedence constraint between tasks. In
contrast, the current paper proposes constraints on the connectivity of
parts, irrespective of the tasks that realize the connections. This type
of constraint is substantially stronger in case of cycles in the liaison
graph, and results in less Benders iterations.

• Subproblem solver: Finally, this paper is the first to present the sub-
problem solver in detail, together with various techniques to increase
its efficiency, including caching for the validation of the feature motion.

9. Conclusions

This paper proposes a novel combination of Benders decomposition with
disjunctive programming for solving the assembly planning problem. The
Benders master problem is a MILP augmented with disjunctive constraints,
while the subproblem (inference dual) is based on the geometrical modeling of
the subassemblies, the fixtures and tools, and uses path planning and collision
detection algorithms to identify infeasible assembly tasks in a plan. If a task
in a sequence proves infeasible, a disjunctive constraint is generated and fed
back to the Benders master problem. The geometric inference methods use
adaptations of well-known techniques to generate new, strong disjunctive
constraints on the assembly plan. The main benefit of the approach is that
it ensures the feasibility of the assembly plans on fine-grained models, which
is not tractable using classical approaches that aim to perfectly characterize
the set of all feasible task sequences before search.

The efficiency of the proposed approach is demonstrated both on indus-
trial case studies and on generated problem instances, which show that the
approach can solve problems of industrially relevant sizes in a reasonable
amount of time.

Acknowledgments

This work has been supported by the NKFIH grant no. ED 18-2-2018-
0006. A. Kovács acknowledges the support of the János Bolyai scholarship.

33

Declarations

Declarations of interest: none.

References

Bahubalendruni, M.R., Biswal, B.B., 2016. A review on assembly sequence
generation and its automation. Proceedings of the Institution of Mechan-
ical Engineers, Part C: Journal of Mechanical Engineering Science 230,
824–838.

Balas, E., 1975. Disjunctive programming: cutting planes from logical con-
ditions, in: Nonlinear Programming 2. Academic Press, pp. 279–312.

Balas, E., 1979. Disjunctive programming, in: Annals of Discrete Mathe-
matics. Elsevier. volume 5, pp. 3–51.

Balas, E., 1998. Disjunctive programming: Properties of the convex hull of
feasible points. Discrete Applied Mathematics 89, 3–44.

Balas, E., 2018. Disjunctive Programming. Springer.

Benders, J.F., 1962. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik 4, 238–252.

Cortés, J., Jaillet, L., Siméon, T., 2008. Disassembly path planning for
complex articulated objects. IEEE Transactions on Robotics 24, 475–481.

De Fazio, T., Whitney, D., 1987. Simplified generation of all mechanical
assembly sequences. IEEE Journal on Robotics and Automation 3, 640–
658.

Fachini, R.F., Armentano, V.A., 2020. Logic-based benders decomposition
for the heterogeneous fixed fleet vehicle routing problem with time win-
dows. Computers & Industrial Engineering , 106641.

Fazel-Zarandi, M.M., Beck, J.C., 2012. Using logic-based benders decomposi-
tion to solve the capacity-and distance-constrained plant location problem.
INFORMS Journal on Computing 24, 387–398.

Geoffrion, A.M., 1972. Generalized benders decomposition. Journal of Opti-
mization Theory and Applications 10, 237–260.

34

Grossmann, I.E., 2002. Review of nonlinear mixed-integer and disjunctive
programming techniques. Optimization and engineering 3, 227–252.

Hassan, S., Yoon, J., 2010. Haptic based optimized path planning ap-
proach to virtual maintenance assembly / disassembly (MAD), in: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1310–1315.

Hooker, J.N., 2007. Planning and scheduling by logic-based benders decom-
position. Operations research 55, 588–602.

Hooker, J.N., 2011. Logic-based methods for optimization: combining opti-
mization and constraint satisfaction (2nd edition). John Wiley & Sons.

Hooker, J.N., 2019. Logic-based benders decomposition for large-scale op-
timization, in: Large Scale Optimization in Supply Chains and Smart
Manufacturing. Springer, pp. 1–26.

Hooker, J.N., Ottosson, G., 2003. Logic-based benders decomposition. Math-
ematical Programming 96, 33–60.

Hopcroft, J., Tarjan, R., 1973. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM 16, 372–378.

Hu, S.J., Ko, J., Weyand, L., ElMaraghy, H., Lien, T., Koren, Y., Bley,
H., Chryssolouris, G., Nasr, N., Shpitalni, M., 2011. Assembly system
design and operations for product variety. CIRP Annals–Manufacturing
Technology 60, 715–733.

Hui, C., Yuan, L., Kai-fu, Z., 2009. Efficient method of assembly sequence
planning based on GAAA and optimizing by assembly path feedback for
complex product. The International Journal of Advanced Manufacturing
Technology 42, 1187–1204.

Jiménez, P., 2013. Survey on assembly sequencing: a combinatorial and
geometrical perspective. Journal of Intelligent Manufacturing 24, 235–250.

Kardos, C., Kovács, A., Váncza, J., 2016. Towards Feature-based Human-
robot Assembly Process Planning. Procedia CIRP 57, 516–521.

35

Kardos, C., Kovács, A., Váncza, J., 2017. Decomposition approach to opti-
mal feature-based assembly planning. CIRP Annals–Manufacturing Tech-
nology 66, 417–420.

Kardos, C., Kovács, A., Váncza, J., 2020. A constraint model for assembly
planning. Journal of Manufacturing Systems 54, 196–203.

Kardos, C., Váncza, J., 2018. Mixed-initiative assembly planning combin-
ing geometric reasoning and constrained optimization. CIRP Annals–
Manufacturing Technology 67, 463–466.

Kloimüllner, C., Raidl, G.R., 2017. Full-load route planning for balancing
bike sharing systems by logic-based benders decomposition. Networks 69,
270–289.

Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D., 2000. Fast proximity
queries with swept sphere volumes, in: Proc. of ICRA2000, IEEE Interna-
tional Conference on Robotics and Automation, pp. 3719–3726.

Lavalle, S.M., Kuffner, J.J., 2000. Rapidly-exploring random trees: Progress
and prospects, in: Algorithmic and Computational Robotics: New Direc-
tions, pp. 293–308.

Le, D.T., Cortés, J., Siméon, T., 2009. A path planning approach to
(dis)assembly sequencing, in: 2009 IEEE International Conference on Au-
tomation Science and Engineering, pp. 286–291.

Morato, C., Kaipa, K.N., Gupta, S.K., 2013. Improving assembly precedence
constraint generation by utilizing motion planning and part interaction
clusters. Computer-Aided Design 45, 1349–1364.

Neb, A., 2019. Review on approaches to generate assembly sequences by
extraction of assembly features from 3D models. Procedia CIRP 81, 856–
861. 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana,
Slovenia, June 12-14, 2019.

Pan, J., Chitta, S., Manocha, D., 2012. FCL: A general purpose library for
collision and proximity queries, in: Proc. of ICRA2012, IEEE International
Conference on Robotics and Automation, pp. 3859–3866.

36

Rashid, M.F.F., Hutabarat, W., Tiwari, A., 2012. A review on assembly se-
quence planning and assembly line balancing optimisation using soft com-
puting approaches. The International Journal of Advanced Manufacturing
Technology 59, 335–349.

Rodŕıguez, I., Nottensteiner, K., Leidner, D., Kassecker, M., Stulp, F., Albu-
Schäffer, A., 2019. Iteratively refined feasibility checks in robotic assembly
sequence planning. IEEE Robotics and Automation Letters 4, 1416–1423.

Romney, B., Godard, C., Goldwasser, M., Ramkumar, G., 1995. An effi-
cient system for geometric assembly sequence generation and evaluation,
in: Proc. of the 15th ASME International Computers in Engineering Con-
ference, pp. 699–712.

Roshanaei, V., Luong, C., Aleman, D.M., Urbach, D., 2017. Propagating
logic-based benders’ decomposition approaches for distributed operating
room scheduling. European Journal of Operational Research 257, 439–
455.

Schwarzer, F., Saha, M., Latombe, J.C., 2004. Exact collision checking of
robot paths, in: Algorithmic Foundations of Robotics V, Springer. pp.
25–41.

Thomas, U., Barrenscheen, M., Wahl, F.M., 2003. Efficient assembly se-
quence planning using stereographical projections of c-space obstacles, in:
Proc. of the IEEE International Symposium on Assembly and Task Plan-
ning, pp. 96–102.

Tsukiyama, S., Shirakawa, I., Ozaki, H., Ariyoshi, H., 1980. An algorithm to
enumerate all cutsets of a graph in linear time per cutset. Journal of the
ACM 27, 619–632.

Wang, L., Keshavarzmanesh, S., Feng, H.Y., 2011. A function block based
approach for increasing adaptability of assembly planning and control. In-
ternational Journal of Production Research 49, 4903–4924.

Wheatley, D., Gzara, F., Jewkes, E., 2015. Logic-based benders decompo-
sition for an inventory-location problem with service constraints. Omega
55, 10–23.

37

Wilson, R.H., Latombe, J.C., 1994. Geometric reasoning about mechanical
assembly. Artificial Intelligence 71, 371–396.

Appendix A. Feature-based assembly model

The feature-based model applied in this research is an object-oriented
representation of all the geometrical and technological information required
to plan the assembly process of the given product. The model consists of the
following entities:

• All parts of the assembly are modelled as 3D solid objects, see Appendix
B for details.

• Features characterize the liaisons of parts with all relevant geometrical
and technological information. With binary (i.e., two-handed) assem-
bly assumed, each feature connects exactly two sets of parts. When
such a part set is not singleton (i.e,. it is a subassembly), then the
contained parts be must joined prior to the execution of the current
feature. Observe that even in this case, the feature-based model can
be represented by a classical liaison graph, rather than a hyper-graph,
by selecting an arbitrary part from the subassembly as the end point
of the classical binary edge, and recording the additional precedence
constraint (not directly captured in the liaison graph).

The current implementation supports placing, insertion, and screwing
features. A detailed definition of a richer set of assembly features is
available, e.g., in (Wang et al., 2011). The technological parameters of
the features used for planning include the direction vector (direction of

the feature motion
−−−→
PNPF), as well as the insertion depth (for insertion

and screwing features) and the safety distance (all features) whose sum

determines the length of
−−−→
PNPF . Finally, the estimated duration of the

assembly tasks is also part of the feature model.

The applied model allows so-called composite features, i.e., a grouping
of individual features that must be performed together by design, us-
ing identical resources. A typical example of a composite feature is
assembling a set of pre-positioned parts (the base parts in the feature)
using a set of identical screws (moved parts), see Figure A.8. In the
macro-level planning model, one task is generated for each assembly
feature, either individual or composite.

38

Figure A.8: Example of composite feature: joining a set of pre-positioned parts using four
identical parallel-axis screws.

It is highlighted that the liaison graph defined by the features may
contain cycles, which represent significantly different alternatives in
the assembly process. In the ball valve case study, such alternatives are
placing the o-ring sealing on house or on the cover before assembling
the house and the cover themselves (Figure A.9). When the liaison
graph is a tree, then all features must be executed.

• Tools are characterized by their changeover times (for macro-level plan-
ning) and their geometry (for micro-level validation). Moreover, the
applicability of a tool to perform an assembly feature is given in the
input together with the relative position of the tool to the moved part.

• Fixtures are defined by the grasped part, the maximal subassembly that
can be held by the fixture, and their changeover time (used by macro-
level planning), as well as their geometry, together with the transfor-
mation matrix that specifies the relative position of the grasped part
w.r.t. the fixture (used for micro-level validation). In case a fixture can
grasp multiple parts or one part in multiple ways, then the physical
fixture is described by multiple fixture objects in the model.

Appendix B. Geometrical models of parts and resources

All physical objects involved in the assembly process, including parts,
fixtures, and tools are modelled as free-form 3D solid objects that move dur-
ing the assembly task according to the laws defined in the corresponding
assembly feature. Each solid object is described by a triangle mesh, which

39

Figure A.9: Alternative assembly processes corresponding to cycles in the liaison graph:
joining the o-ring sealing to the house (left) or to the cover (right) in the ball valve case
study.

has two key benefits: the mesh representation can be generated from all
major CAD systems in STL file format; and (2) collision detection can be
performed efficiently on this representation of free-form geometries (Larsen
et al., 2000; Pan et al., 2012). On the other hand, a particular challenge re-
lated to this representation is that mesh geometries are inevitably imprecise,
see Figure B.10. Consequently, parts that touch each other in reality often
occur as colliding geometries in the model, which must be handled by the
appropriate post-processing of the raw results of the collision queries. The
same difficulty arises with deformable parts, such as the sound protection
parts in our automotive case study. Algorithms for tackling these challenges
have been proposed in (Kardos and Váncza, 2018). For fixtures and tools
that cannot be described by a solid geometry, such as a human hand used
for holding or moving a part, geometries are omitted, and these resources are
exempt from collision checks.

Appendix C. Modeling the motion of the parts and resources

For collision detection during assembly, not only the geometry, but also
the relative motion of the above objects has to be captured. In two-handed
assembly, two groups of objects move relative to each other: (1) the base sub-
assembly together with the fixture, and (2) the moved subassembly together
with the tool. Within either group, the relative position of the objects is

40

Figure B.10: The smooth geometry (left) and the triangle mesh model (right) of the ball
valve assembly.

fixed. This motion can be described in the configuration space of the relative
positions of the base and the moved objects. The current implementation
assumes 3D translations only, which is sufficient in most industrial use cases,
but the proposed techniques can be naturally extended to allow both trans-
lations and rotations, according to the special Euclidean group SE(3). All

motions considered are either linear (e.g., the feature motion
−−−→
PNPF) or piece-

wise linear (the approach motion

PRPF) in this configuration space.

41

