A Global Constraint for Total Weighted
Completion Time for Unary Resources

Andras Kovacs
Computer and Automation Research Institute
Hungarian Academy of Sciences
akovacs@sztaki.hu

J. Christopher Beck
Department of Mechanical and Industrial Engineering
University of Toronto, Canada
jcb@mie.utoronto.ca

November 30, 2009

Abstract

We introduce a novel global constraint for the total weighted comple-
tion time of activities on a single unary capacity resource. For propa-
gating the constraint, we propose an O(n*) algorithm which makes use
of the preemptive mean busy time relaxation of the scheduling problem.
The solution to this problem is used to test if an activity can start at each
start time in its domain in solutions that respect the upper bound on
the cost of the schedule. Empirical results show that the proposed global
constraint significantly improves the performance of constraint-based ap-
proaches to single-machine scheduling for minimizing the total weighted
completion time. We then apply the constraint to the multi-machine job
shop scheduling problem with total weighted completion time. Our ex-
periments show an order of magnitude reduction in search effort over the
standard weighted-sum constraint and demonstrate that the way in which
the job weights are associated with activities is important for performance.

Keywords: Scheduling, constraint propagation, total weighted comple-
tion time

1 Introduction

Many successful applications of constraint programming (CP) to optimization
problems exhibit a “maximum type” optimization criteria, characterized by min-
imizing the maximum value of a set of variables (e.g., makespan, maximum tar-
diness, or peak resource usage in scheduling). Such criteria exhibit strong back

propagation: placing an upper bound on the cost function results in the prun-
ing of the domain (i.e., the reduction of the maximum value) of the constituent
variables and the subsequent reduction in search space. Particularly in the
scheduling domain, CP has not been as successful for other practically impor-
tant optimization criteria such as “sum type” objective functions characterized
by the minimization of the sum of a set of variables. Examples include total
weighted completion time, weighted tardiness, weighted earliness and tardiness,
and the number of late jobs. Even the recent and most efficient constraint-based
approaches to scheduling with such criteria use only weak propagation, such as
a weighted-sum constraint, although these are often coupled with strong lower
bounding techniques to infer dead-ends [4]. Back propagation of the sum con-
straint is weak because it is often the case that the maximum value of each
addend variable is supported by the minimum values of all the other variables.
The significance of more efficient global constraints for back propagation has
been emphasized by Focacci et al. [15, 16].

Our purpose is to develop algorithms for propagating “sum type” objective
functions in constraint-based scheduling. In this paper, we address the total
weighted completion time criterion on a single unary resource. This has equiva-
lents in a wide range of applications. For example, in container loading problems
it is typical to have constraints on the location of the centre of gravity (COG)
of the cargo loaded into the container. The location of the COG in any selected
dimension corresponds to the total weighted completion time in a schedule, in
which activities stand for the boxes inside the container. Activity durations cor-
respond to box lengths, resource requirements to the surfaces of the boxes, and
activity weights to physical weight of the loaded boxes [23]. Another example is
the capacitated lot-sizing problem and its discrete variant, where different items
are produced on a resource with limited capacity, with specific deadlines [13].
The cost of a solution is composed of a holding cost and a setup or ordering
cost where the former is computed as the total weighted difference of deadlines
and actual production times. Apart from a constant factor, this is equivalent
to the weighted distance of the activities from a remote point in time, which
corresponds to the weighted completion time in a reversed schedule.

In all these applications, the total weighted completion time constraint ap-
pears as only one component of a complex satisfaction or optimization problem,
in conjunction with various other constraints. Therefore, it appears appropri-
ate to adopt a CP approach, where an inference algorithm is embedded inside
a global constraint for total weighted completion time which is used to model
and solve different optimization problems.

The remainder of this paper is organized as follows. In the next section, we
introduce the notation used in the paper. In Section 3, we review the related
literature. This is followed by the presentation and analysis of the proposed
constraint propagation algorithm (Section 4). In Section 5, we turn to the
empirical evaluation of the constraint on single-machine scheduling problems.
Section 6 presents the modelling and solving of the multi-machine job shop
scheduling problem using the constraint, including further experimental results.
Section 7 discusses extensions and future work. Finally, in Section 8 we conclude.

2 Definitions and Notation

This paper introduces the COMPLETION global constraint for the total weighted
completion time of activities on a unary resource. Formally, let there be given a
set of n activities, A;, to be executed without preemption on a single, unary ca-
pacity resource. Each activity is characterized by its processing time, p;, and a
non-negative weight, w;. The start and end time variables of A; will be denoted
by S; and Cj, respectively, and the constraint C; = S; + p; must hold. When
appropriate, we call the current lower bound on a start time variable S; the
release time of the activity, and denote it by r;. The total weighted completion
time of the activities will be denoted by C'. We assume that all data are integral.
Thus, the constraint that enforces C' = >, w;(S; + p;) on activities takes the
following form.

COMPLETION([S1, ..., Snls [P1s -y Pnls [W1, ooy wi], C)

Throughout this paper, we assume that p; and w; are constants. In applications
where this assumption cannot be made, the lower bounds can be used during
the propagation.

We will propose a propagation algorithm that filters the domains of the
S; variables (because in our case, domain filtering has the same complexity as
adjusting only the bounds). It tightens only the lower bound on C, which is
sufficient in applications where the cost is to be minimized.! The minimum and
maximum values in the current domain of a variable X will be denoted by X
and X, respectively.

Our algorithm will exploit preemptive relaxations. In a given preemptive
schedule, an activity fragment is a maximal portion of an activity that is pro-
cessed without interruption. We extend the above notation to activity frag-
ments as well. Given a fragment a of activity A4;, S(a), C(«), and p(«)
stand for the start time, end time, and the duration of «, respectively, with
S(a) + p(a) = C(a) and p(a) < p;. Moreover, r(a) = r; and w(a) = wi%.

We will make extensive use of the notion of the mean busy time of an activity,
denoted by M;. It stands for the average point in time at which the machine is
busy processing A;. In a fixed schedule, this is easily calculated by finding the
mean of each time unit during which activity A; executes. In non-preemptive
scheduling problems C; = M, + %pi holds for each activity. In preemptive
problems, only the inequality C; > M, + %pi holds. Note that M; can be
fractional even if all parameters in the problem are integer.

n applications were it is important to tighten the upper bound of C, we propose to build
a redundant model including a reversed schedule. The reversed schedule contains activities
A;" with S;” = T — C;, where T is the length of the scheduling horizon. The reversed schedule
is characterized by a total weighted completion time of C’/ = > w; Cy' = > wi (S’ +pi) =
>, wi(T—Ci+p;) =nT+Y, wip; — C. Hence, posting a COMPLETION constraint on this
reversed schedule tightens the upper bound of C' via this channeling constraint.

3 Related Literature

The complexity, approximability, and algorithmic aspects of total weighted com-
pletion time scheduling problems have been studied extensively. Two of the
problem variants most relevant for our contribution are the single and paral-
lel machine versions with release dates. The classical scheduling notations for
these problems are 1|r;| > w;C; and Plr;| > w;C;, respectively. Both variants
are known to be NP-hard in the strong sense, even with uniform weights. Var-
ious polynomially solvable cases have been identified. For example, without
release dates, ordering the activities according to the Weighted Shortest Pro-
cessing Time rule, i.e., by non-decreasing p;/w;, yields an optimal solution.
The preemptive version of the single machine problem with release dates and
unit weights (1|r;, pmtn|Y_ C;) is polynomially solvable using Shortest Remain-
ing Processing Time rule, but adding non-uniform weights renders it NP-hard.
A comprehensive overview of the complexity of related scheduling problems is
presented in Chen et al. [9].

Linear programming (LP) and combinatorial lower bounds for the single
machine problem have been studied and compared by Goemans et al. [18] and
Dyer & Wolsey [14]. The preemptive time-indexed formulation corresponds to an
assignment problem in which variables indicate whether activity A; is processed
at time ¢. In an alternative LP representation, the non-preemptive time-indexed
formulation, variables express if activity A; is completed at time ¢. Dyer &
Wolsey [14] have shown that the latter relaxation is strictly tighter than the
former. Since the number of variables in these formulations depend both on
the number of activities and the number of time units, they can be solved in
pseudo-polynomial time.

Another LP relaxation has been proposed by Schulz [33], using completion
time variables. Subsequently, Goemans et al. [18] proved that this relaxation
is equivalent to the preemptive time-indexed formulation, by showing that a
preemptive schedule that minimizes the mean busy time yields the optimal so-
lution for both relaxations. Moreover, this preemptive schedule can be found in
O(nlogn) time, where n is the number of activities. The authors also pro-
pose two randomized algorithms (and their de-randomized counterparts) to
convert the preemptive schedule into a feasible solution of the original non-
preemptive problem, 1|r;| > w;C;, and prove that these algorithms lead to 1.69
and 1.75-approximations, respectively. These results also imply a guarantee on
the quality of the lower bound. Polynomial time approximation schemes for
the single and parallel machines case, as well as for some other variants are
presented in Afrati et al. [1]. The time complexity of the algorithm to achieve
a (14 ¢)-approximation for a fixed ¢ is O(nlogn), but the complexity increases
super-exponentially with e.

Papers presenting complete solution methods for different versions of the
total weighted completion time problem include earlier works by Belouadah et
al. [7, 8], and more recent papers by Pan [28] for a single machine, Nessah et
al. [26] for identical machines, and Della Croce et al. [11], as well as Akkan &
Karabat1 [2] for the two-machine flowshop problem. Most of these algorithms

make use of lower bounds similar to the ones discussed above, as well as a variety
of dominance rules and customized branching strategies.

In constraint programming, the significance of cost-based global constraints
for strong back propagation has been emphasized by Focacci et al. [16]. Cost-
based constraints with effective propagation algorithms include the global cardi-
nality constraint with costs [29], the minimum weight all-different constraint [34],
the path cost constraint for traveling salesman problems [15], the cost-regular
constraint [12], and the inequality-sum constraint [31]. The last work propa-
gates objective functions of the form) . x; where variables x; are subject to
binary inequality constraints of the form x; — x; < c. An efficient propagation
algorithm based on Dijkstra’s shortest path method is proposed. While the
constraint can be applied to propagate the mean flow time or mean tardiness
criterion in Simple Temporal Problems [10], it cannot exploit the information
that activities must be performed on the same resource with limited capacity.

In the field of scheduling with “sum type” objective functions, Baptiste et
al. [3] proposed a branch-and-bound method for minimizing the total tardiness
on a single machine. While building the schedule chronologically, the algorithm
makes use of constraint propagation to filter the set of possible next activities
by examining how a given choice affects the value of the lower bound. Baptiste
et al. [5] address the minimization of the number of late activities on a single
resource, and generalize some well-known resource constraint propagation tech-
niques for the case where there are some activities that complete after their due
dates. The authors also propose propagation rules to infer if activities are on
time or late, but the applicability of these inference techniques is restricted by
the fact that they incorporate dominance rules that might be invalid in more
general contexts. For propagating the weighted earliness/tardiness cost function
in general resource constrained project scheduling problems, Kéri & Kis [21] de-
fine a simple method for tightening time windows of activities by eliminating
values that would lead to solutions with a cost higher than the current upper
bound.

4 Propagating Total Weighted Completion Time
on a Unary Resource

Propagating the COMPLETION global constraint means removing the values
from the domains of variables S; (i = 1,...,n) and C that are inconsistent with
the constraint. Deciding, in general, whether a given value is consistent with
the COMPLETION constraint and the current domain bounds of the variables
is equivalent to the decision version of the 1|r;, d;| >, w;C; scheduling problem,
which is known to be NP-complete [9]. This implies that, unless P=NP, there is
no efficient algorithm that could find and remove all inconsistent domain values.
The common approach in such cases is to consider a polynomially solvable re-
laxation of the property expressed by the constraint, and exploit the relaxation
to prove the inconsistency of some of the domain values [30].

Our propagation algorithm for the COMPLETION constraint relies on a
preemptive mean busy time scheduling problem investigated by Goemans et
al. [18], which can be described as 1|r;,pmtn|)_, w;M;. This expression en-
codes a single-machine scheduling problem subject to release dates (r;) with
preemption allowed (pmin) for minimizing the total weighted mean busy time,
>, wiM;. This relaxes the scheduling problem encoded in COMPLETION in
three ways: (1) it disregards the deadlines of the activities; (2) it allows pre-
emption; (3) instead of the activity completion times Cj, it considers the mean
busy times M;. All of these assumptions are necessary to achieve a relaxation for
which a polynomial-time algorithm is known. Note that). w;C; > >, w; M;+0
with § = % >, Di, hence, the optimal solution of the relaxed problem (plus the
constant ¢) indeed gives a lower bound on the original total weighted completion
time problem.

In what follows, we first present an algorithm for solving the mean busy
time problem, and then show how the solution of this relaxed problem can
be exploited for propagating the COMPLETION constraint efficiently. Every
algorithm will be illustrated on the sample problem in Figure 1.

Ty Di Wi wi/pi
Al 4 2 10 5 , ,))
Ay | 5 4 12 3 0 5 10 15
As; |13 2 8 4

Figure 1: Left: The input data for the sample problem. Right: The optimal
solution of the sample problem. The total weighted completion time is 372.

4.1 Computing a Lower Bound

The optimal solution of the preemptive mean busy time relaxation can be com-
puted in O(nlogn) time [18]. The algorithm maintains a priority queue of the
activities sorted by non-increasing w;/p;. At each point in time, ¢, the queue
contains the activities A; with r; < ¢t that have not yet been completely pro-
cessed. Scheduling decisions must be made each time a new activity is released
or an activity is completely processed. In either case, the queue is updated and
a fragment of the first activity in the queue is inserted into the schedule. The
fragment lasts until the next decision point. If the queue is empty, but there are
activities not yet released, a gap is created. We represent gaps as empty frag-
ments: fragments of an activity with a release date and a weight of 0 and with
an infinite processing time. We also assume that the schedule ends with a suffi-
ciently long empty fragment. Technically, the use of empty fragments is not an
essential feature of our algorithm. However, they make our algorithm descrip-
tions simpler, because they eliminate the need for differentiating the otherwise
identical cases when an activity is followed by a gap or a fragment of another
activity. Since there are at most 2n release time and activity completion events,

and updating the queue requires O(logn) time, the algorithm runs in O(nlogn)
time.

The optimal relaxed schedule for the sample problem is presented in Fig-
ure 2. The lower bound induced by this relaxed solution is 362. In the figure,

/! 1"

fragments of activity A; are denoted by a;, o, af,

etc. Empty fragments are
named e,¢’, ", etc.

Figure 2: The solution of the relaxed problem, with objective value 295. As
6 = 67 for the problem, the lower bound derived from the relaxed solution is
362.

4.2 From a Lower Bound to Propagation — Direct Ap-
proach

The underlying idea of our constraint propagator is to compute the cost of the
mean busy time relaxed problem for each activity A; and each possible start
time t of activity A;, with the added constraint that activity A; must start at
time ¢. Such restricted problems will be denoted by II{(S; = t). The solution
cost of this relaxed problem (plus §), denoted by C(S; = t) = Yo, wiM; + 0
is a valid lower bound on C' in non-preemptive schedules where A; starts at ¢.
Therefore, we can exploit the following lemma to filter the domain of variable

Si.
Lemma 1 Ifé’ < C’(Sz =t), then t can be removed from the domain of S;.

The lower bounding algorithm of Section 4.1 can easily be modified to com-
pute C(S; = t) by assigning 7; = t and w; = co. This gives activity A; the
largest w;/p; ratio among all the activities, ensuring that it starts at ¢ and is
not preempted. Relaxed solutions for various restrictions on the sample prob-
lems are presented in Figure 3. The last diagram in the figure displays C (Si=1)
as a function of . As it will be shown later, this function is piecewise linear,
and it can have an arbitrary number and order of increasing and decreasing
sections.

4.3 From a Lower Bound to Propagation — Recomputation
Approach

Obviously, it would be inefficient to re-solve the II{S; = t) problem separately
for each possible value of ¢ using the direct approach. Instead, we introduce

1eS=0;

o
W
—_
S
—_
W
)
S
Il
~

0, ., 02 &}

Ny
I
Y

11¢Sy=2»
| ! ! } I
f f J ' !
0 5 10 15 20 m={ay, a;, 0y &7}
A=2
H(S():4)
| ! ! } I
f e e !
0 5 10 15 20 g=foy, oy}
A=2
11¢Sy=6)
| ! | } I
f f T ' !
0 5 10 15 20
! T }
T T T
10 15 20 t

Figure 3: Relaxed solutions of various restricted problems, with corresponding
restrictions displayed on the left. Between each pair of subsequent schedules,
the transformation that maps one relaxed solution to the subsequent one are
displayed. The parameters m and A of the transformation are shown on the
right. The diagram at the bottom shows C(S; = t) as a function of .

a quick recomputation method for transforming an initial preemptive schedule
into relaxed solutions for the relevant start time assignments. The relevant
start times are described by an increasing series (to, t1,...,tr) with tg = S; and
tr1 < S’Z < tr. The series will be chosen in such a way that C‘(SZ- = 1)
changes linearly between the consecutive elements, i.e., for all j € [0, L — 1] and

t ety tjtl

asi=1) = A"V, =gy ¢ TN ais =1,

tiv1 — 1 ti+1 — 1

The t; values correspond to the break-points of the function C(S; = t)
over different values of t. The recomputation approach first builds a relaxed
solution for the case that A; starts at tg using the direct approach. Note that
we are unable to determine all the values ¢; at once, before the recomputations.
Instead, we calculate them iteratively: t;11 is computed based on the relaxed
solution for ¢;.

The underlying ideas of the recomputation approach are illustrated in Fig-
ure 3. The start time domain of activity Ay (equivalent to fragment «y) is being
filtered, and the relevant time points ¢; are 0, 2, 4, 6, etc. The figure displays the
optimal solutions of the relaxed problems corresponding to these time points.
Between each pair of subsequent schedules, the gray arrows show how (parts of)
the fragments have to be moved to transform one relaxed solution to the subse-
quent one. For example, the transformation from II{(Sy; = 0) to II{Sy = 2) can
be performed by moving the first 2 units of the fragments as follows: fragment
« is split, and its 2 first units are moved later in the schedule to start at time 5
(since the relocated fragment is continuous with the rest of ag, they are merged
back). The 2-unit long fragment «y, which initially started at time 5, is moved
later to start at time 7. In turn, as is split, its first 2 units are moved later, and
it is re-merged. Finally, the 2-unit long empty fragment ¢ is moved from time
11 to time 0, which was the initial start time of ay. This move closes the cycle
of movements. The second transformation, i.e., from II{Sy = 2) to II{Sy = 4),
shows an example of splitting a fragment and not merging its parts back: this
is the case for fragment as. In the sequel we give a formal characterization of
these transformations.

FEach recomputation step is performed by one call to a function called RE-
COMPUTESCHEDULE. This function starts with determining the “structure” of
the transformation it has to make on the current preemptive schedule o. This
structure is represented as a list m = (ag = A;, a1, ..., k), where each «y, is an
activity fragment in . The list 7 is constructed as follows:

1. Initialize with 7 := (ap = A;) and k := 0;

2. Find the first fragment o to the right of a; in the schedule such that
w(a)/p(a) < w(ax)/plax); append this « to the end of 7, so in the
continuation this fragment will be called agy1; k:=k + 1;

3. If r(ay) > t; then goto step 2. Otherwise stop.

Note that the iteration stops when a fragment «y is reached that can be
moved earlier to the initial location of agy. The iteration always terminates, be-
cause the empty fragment at the end of the schedule always satisfies the stopping
condition. Also recall that w(A;) = oo is assumed. Next, RECOMPUTESCHED-
ULE sets tj41 = t;+A to be the maximum value such that a transformation with
structure 7 leads to an optimal schedule for II{S; = ¢;11). For that purpose, A
will be set to

mingep, gk—1{p(ar) | Clar) # S(Qk41) mod (K+1))}
A = min

mingep, x—1{r(ar) — S(ao)}

Intuitively, the first line of the expression states that in general, A cannot
be greater than the processing time of the fragments moved. Fragments «y
with C(ar) = S(Q(k+1) mod (kK+1)) are an exception: we will show that we can
manage fragments shorter than A in this case. The second line of the condition
is necessary for the optimality of the transformed solution: if this condition
on «,, bounds A (and this is the only bounding condition), then recomputing
the optimal schedule for the next time point, i.e., from ¢;41 to ¢;42, requires
a substantially different transformation structure, namely " = (ag, ay, ..., @).
Accordingly, the stopping condition of the iteration to build 7' will be hit at
Qm, because this fragment is the first that can be moved in the place of «y.

The values of m and A for several recomputation steps in the sample problem
are displayed in the right hand side of Figure 3. Having parameters = and A
computed, RECOMPUTESCHEDULE sets t;+1 := t; + A and transforms o by
performing the following steps on every fragment «y € 7:

1. If oy is a long fragment, i.e., p(ax) > A, then

o If p(ax) > A then split oy into two fragments. In the continuation,
let oy, denote the first, A-long fragment;

e Move qy, to start at S"(ax) = S(Qk+1 mod K+1);
2. Else « is a short fragment, i.e., p(ag) < A;
e Move ay, to start at S’ (ag) = S(ag) + A;

3. If after the move, ay is placed next to another fragment of the same
activity, then merge these fragments.

Lemma 2 Given an optimal schedule o for II{(S; = t;), the application of
RECOMPUTESCHEDULE converts it into an optimal schedule for II(S; = t;11)

Proof: First, we show that the transformed schedule is feasible. The selection
of m and A ensures that 7w consist of sections of zero or more short fragments
followed by one long fragment, such that C(ax) = S(Q(x+1) mod (x+1)) holds for
the consecutive elements of the section, see Figure 4. Within each section, the
transformation shifts the short fragments to the right by A units. It potentially
splits the long fragment into two, and moves the created A-long fragment to
the start of the next section. This guarantees that the moved sections will not
overlap with each other or with fragments not moved. Also, release times will
be respected.

To prove that the schedule is optimal, let us define a bad pair as a pair

wlon) o wlowa) g p(ay,) <

of activity fragments, ay; and age, such that o) (o)

10

4
e —]

<A—>
IIS=t; p I O] o jr2

Figure 4: A section of the preemptive schedule moved in a transformation. Each
section consists of zero or more short fragments («y and a4 in this example)
and one long fragment (ay11). We exploit this structure to prove that the
transformed schedule is feasible.

Clakr) < S(akz) hold. It is easy to see that a feasible solution of a relaxed
problem is optimal if and only if it does not contain a bad pair, since the
solution can be improved by (and only by) swapping a bad pair.

The initial schedule o for the problem II{S; = ¢;) does not contain a bad pair,
because it is optimal for that problem. The transformed problem II{S; = ¢;11)
differs from that initial problem only in having parameter r; = t;1, instead of
r; = t;. This means that the initial 0 does not contain any bad pair for the
transformed problem, either. Furthermore, RECOMPUTESCHEDULE does not
create bad pairs, because

e within the ap — ag41 (K =0,..., K — 1) move, oy, is swapped later across

fragments that have a higher % ratio than ay.

e the ax — oy move swaps oy earlier, and this fragment has the highest

% ratio among all the fragments that can be scheduled in the interval

[S(Oéo), S(Ozo) =+ A]
O

Lemma 3 The lower bound cost C(S; = t) changes linearly for t € [t;, t;41].

Proof: Lemma 2 remains true if RECOMPUTESCHEDULE uses a value of A
lower than proposed above, which implies that a transformation with structure
7 leads to an optimal schedule for II(S; = t) with ¢; < ¢t < ¢;;1. On the other
hand, the application of RECOMPUTESCHEDULE increases the lower bound cost
by

K—1
w(ay) w(ak)
A S(a — S« — (S(akg) — S« .
Since this expression is proportional to A, the lower bound cost changes linearly
in [tj, ;4] o

11

Finally, we present how our propagation algorithm filters the variable do-
mains. According to Lemma 1, if both C(S; = tj) > C and C(S; = tip1) > C
hold then the complete interval [t;,t;41] can be removed from the domain of S;.
If only the first condition holds, then the first, proportional part of the interval,
ie.,

(A C'—C'<Siftj> l_ll

t;, t; +
[j ’ C(S; = tj41) — C(S; = t5)

is removed. If only the second condition holds, then the last, proportional part
of the interval, i.e.,

C—C(S; =t;)
ti+ | A= 1 +1, t;
! {C<Si=tj+1>—0<5i=tj>J]H]

is removed from the domain of S;. No removal is made otherwise. The new
lower bound on the total weighted completion time is the best bound computed
over the run of the propagator with different activities, i.e.,

C' = max(C, maxmtin(7<5i =1)).

4.4 Overall Algorithm and Its Complexity

The pseudo-code of the proposed constraint propagation algorithm is presented
in Figure 5. The algorithm is implemented in two procedures: the main pro-
cedure PROPAGATE() calls procedure RECOMPUTESCHEDULE(0, ¢, ¢) iteratively,
whose parameters are a schedule o, an integer ¢ that represents the start time
of the activity investigated, and a real number ¢, which equals the cost of o.

Procedure PROPAGATE performs propagation using the recomputation ap-
proach for each activity A; separately (lines 19-35). It initializes by determining
the earliest start time ¢ of A;, building a schedule o for II{.S; = t), computing its
cost ¢ = C (S; = t), and defining the variable ¢y, that will be used to tighten
the lower bound of C. Note that the direct approach to build ¢ (line 21) is a
standard preemptive scheduling algorithm, therefore it is not presented here in
detail. Then, the algorithms iteratively recomputes schedule o by calling RE-
COMPUTESCHEDULE (lines 24-34). Note that RECOMPUTESCHEDULE updates
the values of o, ¢, and c. At this point, variables t,,., and t store the values
of ¢t; and t;1, respectively, while cprey and c contain the corresponding lower
bound costs. Finally, the induced domain filtering is executed for the cases that
the complete interval [t,ey,t], or its first or second part has to be filtered out
(lines 28-33). Finally, the lower bound on C' is tightened (line 35).

Procedure RECOMPUTESCHEDULE starts by building the list 7 that describes
the structure of the transformation to be performed on o (lines 3-7). Parameter
A is computed in lines (8-9). The transformation of o is carried out for each
fragment in 7 in lines (10-15). The procedure ends with updating ¢ and ¢ (lines
16-17).

12

1 PROCEDURE RecomputeSchedule(o,t,c)

2 LET A, := the activity that starts at ¢

3 LET 7 := (4)

4 WHILE r(last(m)) > ¢ OR size(m) =1

5 LET «:= the leftmost fragment in o with

6 S(a) > S(last(m)) and 2 < wlestin)

7 Append o to 7

8 LET A :=min(mingep,x{p(ex) | S(ayi1 mod xi1) # Slar) +plok)},
9 minger, x—1{r(ax) — S(ao)})

10 FORALL k IN [1,size(rw)]

11 IF p(ax) > A THEN

12 LET ar be the first, A—long fraction of ay

13 LET S(ak) := max(S(akr) + A, S(@k+1 mod K+1))

14 IF oy is preceded/succeeded by a fragment of the same activity THEN
15 Merge these fragments

16 LET t:=t+ A

17 LET c::c—|—A(K (S(akgr) — S(ax)) blon) (S(QK)—S(aO))%)
18 PROCEDURE Propagate()

19 FORALL activity A;

20 LET t:=S;

21 LET o := schedule computed by the direct procedure for II(S; =t)
22 LET c := cost(o)

23 LET cmin :=cC

24 WHILE t < S

25 LET tprey i=t

26 LET cprev :=c¢

27 RecomputeSchedule (o, t, c)

28 IF Cprev > C and ¢ > C THEN

29 Remove [tprev,t] from domain(S;)

30 ELSE IF Cprey > C' THEN

31 Remove [tprev,tprev + [(A C(:;__%ll] — 1] from domain(S;)

32 ELSE IF ¢ > C' THEN

33 Remove [tprev + [A g;:cc}lj +1,t] from domain(S;)

34 LET Cmin := min(cmin,)

35 LET C := max(é,c,,]in)

Figure 5: Pseudo-code of the constraint propagation algorithm.

To calculate the time complexity of the algorithm, we need an upper bound
on the number of recomputation cycles required to perform the propagation on
one activity (lines 24-34).

Lemma 4 The number of recomputation steps required per activity is at most
2n2.

13

Proof: Let us distinguish two types of recomputation steps based on how the
size of time interval, A = (t;41 — t;), covered by one recomputation step is
bound. If the condition in line 8 of Figure 5 bounds A, then we call it an A-
type step. If the condition in line 9 bounds A, then we call it a B-type step. If
lines 8 and 9 are equally bounding, then it is considered to be an A-type step.

Furthermore, let the number of inversions I(o) denote the number of frag-
ment pairs («g1, ag2) in the preemptive schedule o such that S(4;) < S(ax1) <

S(agz) and Z((S:;)) < ;U((s:j)) Since there are at most 2n fragments in o, I(0) is
at most ng;l j = 2n? —n. Observe that I(o) is strictly decreased by A-type
recomputation steps, while it is not affected by B-type steps. Therefore, the
number of A-type recomputation steps is at most 2n? — n. On the other hand,
the number of B-type steps is not greater than the number of different activity

release times, which is at most n. O

Therefore, in procedure PROPAGATE, the outer loop (19-35) is repeated n
times, while the inner loop (24-34) is repeated at most n - 2n? = 2n? times.
Assuming that a range removal from a variable domain can be performed in
constant time, the complexity of the inner loop is determined by the proce-
dure RECOMPUTESCHEDULE. Since there are at most 2n fragments in a pre-
emptive schedule, the size of 7 is also at most 2n, therefore one call to RE-
COMPUTESCHEDULE takes O(n) time, which results in an overall complexity of
2n3 - O(n) = O(n*). Hence, the complexity of the inner loop dominates the
complexity of building o in line (21) by the direct approach, which takes only
O(nlogn) time in each cycle, i.e., O(n?logn) in total. This means that the
worst-case time complexity of one run of the proposed propagation algorithm is
O(n%).

We note that in experiments, the practical behavior of the propagator dif-
fered from what is suggested by the above complexity considerations. Comput-
ing the initial preemptive schedules (line 21) took approximately 85% of the
CPU time, while recomputations by RECOMPUTESCHEDULE took only 15%,
even if the latter has the higher worst case complexity. This was due to the low
number of recomputation steps required: on 40-activity instances we typically
observed 4-6 steps (see Section 5 for details).

4.5 Discussion of the Implementation Details

While the pseudo-code depicted in Figure 5 captures the essence of the proposed
propagation algorithm, its performance in applications depends also on various
implementation details. In particular, we applied the following techniques to
speed up the propagation algorithm:

e In constraint-based scheduling it is common to use so-called chronological
solution strategies that build the schedule from its start towards its end.
This implies that the propagator will often face situations where the start
times of the activities scheduled first are bound. During propagation we
ignore this bound beginning section of the schedule, and only consider its

14

known cost.

e Relaxed solutions are saved during each run of the propagator; filtering
the domain of S; is attempted again only after S;, j # ¢ have increased,

or C has decreased sufficiently to modify the relaxed solutions.

In contrast to the proposed propagation algorithm, most constraint propa-
gators in scheduling apply bounds consistency instead of domain consistency.
Despite this, our experiments showed that it is slightly faster to remove infea-
sible values from inside the domains for our COMPLETION propagator, since
this results in a somewhat lower number of calls to this computationally expen-
sive propagator. Nevertheless, the difference between the two domain reduction
methods was minor, and a re-implementation in a different solver may bring
different results.

5 Applying COMPLETION to Single-Machine
Scheduling

In order to evaluate the proposed propagation algorithm in relative isolation
(i.e., separated from more complex problems in which we are eventually inter-
ested in embedding it), we ran computational experiments to measure its per-
formance on the single-machine total weighted completion time problem with
release times, 1|r;| > w;C;.

The proposed algorithms have been implemented as a global constraint prop-
agation algorithm in C++ and embedded into ILOG Solver and Scheduler ver-
sions 6.1. We set the resource capacity enforcement to use the following in-
ference techniques provided by the ILOG libraries: the precedence graph, the
disjunctive constraint, and edge finding [32]. We used an adapted version of the
SetTimes branching heuristic [24, 32]: in each search node from the set of not
yet scheduled (and not postponed) activities, the heuristic selects the activity
that has the smallest earliest start time (EST) and then breaks ties by choosing
the activity with the highest w;/p; ratio. Two branches are created according
to whether the start time of this activity is bound to its EST or it is postponed.
If any postponed activity can end before the EST of the selected activity, the
search backtracks as no better schedule exists in the subtree. An activity is no
longer postponed when constraint propagation increases its EST.

We compared the performance of three different models. The first used the
standard weighted-sum (WS) constraint for propagating the optimization crite-
rion. The second calculated the lower bound presented in Section 4.1 (WS+LB)
at each node and used it for bounding. The third model made use of the pro-
posed COMPLETION constraint.

These algorithms were tested on benchmark instances from the online repos-
itory [27], which were also used in Pan & Shi [28] and were generated in a sim-
ilar fashion as in several earlier works [7, 20, 35]. The repository contains 10
single-machine problem instances for each combination of parameters n and R,

15

where n denotes the number of activities and takes values between 20 and 200
in increments of 10, while R is the relative range of the release time, chosen
from {0.2,0.4,0.6,0.8,1.0,1.25,1.5,1.75,2.0,3.0}. Activity durations are ran-
domly chosen from UJ1,100], weights from U[l,10], and release times from
UJ0,50.5nR], where Ula,b] denotes the integer uniform distribution over in-
terval [a,b]. Out of these 1900 instances in total, we ran experiments on the 300
instances with n < 70 and every second value of parameter R. The experiments
were run on a 1.86 GHz Pentium M computer with 1 GB of RAM, with a time
limit of 120 CPU seconds.

n R WS WS+LB COMPLETION
Solved Nodes Time Solved Nodes Time Solved Nodes Time
20 0.2 - - - 10 881 0.00 10 47 0.00
0.6 2 1842024 62.00 10 2023 0.00 10 98 0.00
1.0 10 114359 3.60 10 1788 0.10 10 109 0.00
1.5 10 2518 0.00 10 224 0.00 10 67 0.00
2.0 10 140 0.00 10 102 0.00 10 51 0.00
30 .2 - - - 10 3078 0.10 10 116 0.00
0.6 - - - 10 21455 3.20 10 424 0.00
1.0 5 845422 58.60 9 115187 17.00 10 7127 2.90
1.5 10 21555 1.30 10 1932 0.10 10 189 0.00
2.0 10 2633 0.10 10 863 0.00 10 160 0.00
40 0.2 - - - 10 16235 2.50 10 263 0.10
0.6 - - - 8 300649 58.25 9 4909 4.88
1.0 2 164455 30.50 4 56536 11.75 10 27717 15.60
1.5 10 40160 2.80 10 9111 1.30 10 602 0.20
2.0 10 60602 3.70 10 3731 0.20 10 379 0.00
50 0.2 - - - 8 163551 37.62 10 1690 2.80
0.6 - - - - - - 8 32709 56.75
1.0 - - - - - - 2 27386 41.00
1.5 3 92954 8.33 7 117120 27.00 10 12358 15.3
2.0 8 36056 3.37 9 7050 1.22 10 1535 0.80
60 0.2 - - - 2 354131 97.00 10 17553 35.60
0.6 - - - - - - - - -
1.0 - - - - - - - - -
1.5 - - - 4 199608 61.50 8 44098 33.00
2.0 4 120345 12.75 9 49433 11.55 10 5433 4.40
70 0.2 - - - - - - 6 3323 12.66
0.6 - - - - - - - - -
1.0 - - - - - - 1 12899 48.00
1.5 - - - 2 191104 65 3 9147 14.66
2.0 3 134782 19.33 7 112472 35.71 9 14714 13.22

Table 1: Experimental results: number of instances solved (Solved), mean num-
ber of search nodes (Nodes) and mean search time (Time) for the different
versions of the branch and bound. A ‘-’ indicates that none of the instances
were solved to optimality within the time limit. The means are computed only
on the instances that the algorithm solved.

The experimental results are presented in Table 1, where each row contains
combined results for the 10 instances with the corresponding number of activ-
ities, n, and release time range, R. For each of the three models, the table
displays the number of the instances that could be solved to optimality (column
Solved), the average number of search nodes (Nodes), and average search time
in seconds (Time). The average is computed only on the instances that the
algorithm solved. The results show that the classical WS model fails on some

16

of the 20-activity instances, whereas the COMPLETION constraint enabled us
to solve—with one exception—all problems with at most 40 activities, and also
performed well on the 50-activity instances. COMPLETION constraint adds
significant pruning strength to the constraint-based approach: the COMPLE-
TTION model required up to 2 orders of magnitude less search node to find
optimal solutions than WS. The pruning not only paid off in the means of the
number of search nodes, but also decreased solution time on every instance,
compared to both other models. Note that in some rows of Table 1, greater
average computation times are displayed for COMPLETION than for WS+LB.
This is purely because the average is computed over different sets of solved
instances.

The results illustrate that instances with release time range R € {0.6,1.0}
are significantly harder for WS+LB and COMPLETION than other instances.
This is explained by the fact that with R < 1, activities in the second half of the
schedule can simply be ordered by non-increasing w;/p;. On this section of the
schedule, the lower bound is exact and our propagator achieves completeness.
On the other hand, R > 1 leads to problems where only a few activities can
be chosen for scheduling at any point in time, which makes the instance easily
solvable as well.

It is instructive to compare our results to state-of-the-art techniques for
solving the single-machine problem. Our algorithms compare favorably to ex-
isting LP-based methods [35] that are able to solve instances with at most 30 to
35 activities, and earlier branch-and-bound methods [7], which solve problems
with 40 to 50 activities. On the other hand, our approach is outperformed by
two different, recent solution methods. One is a branch-and-bound algorithm
combined with powerful dominance rules, constraint propagation, and no-good
recording by Jouglet et al. [20], which has originally been developed for solving
the more general total weighted tardiness problem. The other is a dynamic
programming approach enhanced with dominance rules and constraint propa-
gation by Pan & Shi [28]. These two approaches are able to solve instances with
up to 100 and 200 activities, respectively. A part of the contributions of the
previous work, especially the strong dominance rules [20, 28] are orthogonal and
complementary to the COMPLETION constraint. We expect that combining
such approaches with the COMPLETION constraint would lead to further per-
formance improvements on the single-machine problem. However, as noted, our
main aim is to address more complex problems where the sum type optimiza-
tion criteria under capacity constraints appears as a sub-problem rather than to
solve the single-machine problem itself. In the next section, we turn to one such
problem, the job shop scheduling problem. In Section 7, we note preliminary
results on other such problems.

17

6 Applying the COMPLETION Constraint to
the Job Shop Scheduling Problem

An n x m job shop scheduling problem (JSP) has n jobs each composed of
m completely ordered activities. Each activity requires exclusive use of one
resource during its execution. The duration and the resource for each activity
are given and may be different from that of other activities. Often, as in the
problems studied here, a different resource is specified for each activity in a
job. An activity cannot start until the activity immediately preceding it in the
same job has finished. The standard JSP decision problem asks if, for a given
makespan, D, all activities can finish by D. This is a well-known NP-complete
problem [17]. It is not uncommon to solve the optimization version of the JSP
with the goal of minimizing makespan, another metric such as sum of earliness
and tardiness [6], or, in the present case, the sum of the weighted completion
time of all jobs. More formally, given a set of jobs J and a weight, w;,j € J,
our goal is to find a start time for each activity such that:

e no resource executes more than one activity at a time
e cach activity starts after its preceding activity in the job-order ends
. Zje 7 w;CE, is minimized, where Ej; is the last activity in job j.

We study square JSPs (i.e., n = m) where each job has exactly one activity
on each resource.

6.1 From Job Weights to Activity Weights

Applying the COMPLETION constraint to the JSP is straightforward as the
resources have unary capacity. The only complication is that the constraint uses
a weight on each activity and the JSP has weights on each job. Therefore, we
need to define a mapping from job weight to activity weight. We investigate
three such mappings here.

1. last: The obvious approach is to assign the job weight to the last activity
in each job and to assign all other activities a weight of zero. We then
place a COMPLETION constraint on each resource that has a non-zero
weight activity and the total weighted completion time is the sum of the
C values of each COMPLETION constraint.

This approach has two main drawbacks. First, a computationally expen-
sive COMPLETION constraint is placed on each resource and the prop-
agation algorithm is executed whenever there is a change in an activity
time window. Second, the COMPLETION constraint makes inferences
based on a relaxation that focuses on the interaction among activities
on the same resource. Clearly, this interaction is not captured when the
weighted activities are on different resources. In the extreme, the last ac-
tivity in each job may be the only weighted activity on a resource. Under

18

such circumstances, the COMPLETION constraint is not able to make
any inferences stronger than the simple weighted-sum constraint.

2. busy: To address the weaknesses of last, before solving we identify the
most loaded resource, i.e., the “busy” resource, by summing the durations
of the activities on each resource and selecting the resource with highest
sum. The weight of each job is assigned to the activity of the job that
is processed on the busy resource. All other activities have a weight of
zero. A single COMPLETION constraint can then be posted on the busy
resource. To calculate the total weighted completion time, we need to
correct for the fact that the weighted activity is not necessarily the last
activity in the job.

Formally, as above, let E; be the last activity in job j and let B; be
the single weighted activity in job j. Our optimization function is then:
C+3 e, wi(Cp; —Cp;) where C'is the cost variable associated with the
COMPLETION constraint.

3. each: The intuition for busy is that the important interactions among jobs

are most likely to be observed on the busiest resource. However, this is
clearly a heuristic as we do not necessarily identify the truly most con-
strained resource and it is likely that different resources will result in dif-
ferent and complementary inferences at different search states. Therefore,
our final mapping places a COMPLETION constraint on each resource,
correcting, as in busy, if an activity on a resource is not the last in the
job.
Formally, our optimization function is: max;(C; +3_,c ; wj(Cr; — Cact;;)
where i indexes the resources, C; is the cost variable associated with the
COMPLETION constraint on resource %, and act;; is the last activity in
job j that executes on resource 1.

6.2 Experimental Details

To test the effectiveness of the COMPLETION constraint, we compare it against
the standard weighted-sum, WS, form of the optimization function. For com-
pleteness, we also run WS with last, busy, and each weight allocations.

We experiment with two styles of search: chronological backtracking and
randomized restart. For chronological backtracking (i.e., depth-first search) we
use the same customized version of the SetTimes heuristic as applied for the
single-machine problems (see Section 5).

For randomized restart, the limit on the number of backtracks before restart-
ing evolves according to the universal limit developed by Luby et al. [25]. The
heuristic is a randomized version of the customized SetTimes heuristic used
above. Again, the set of non-postponed activities with minimum start time are
selected. One activity from this set is randomly chosen by a biased roulette
wheel weighted by the ratio of activity weight to duration. Higher weight, lower
duration activities have a higher probability of being selected.

19

Two sets of 10 x 10 JSP problems are used. Initially ten makespan-minimi-
zation instances were generated with an existing generator [36]. The machine
routings were randomly generated and the durations were randomly drawn from
U[1,99]. These instances were transformed into two sets of total weighted com-
pletion time problems with the only difference being the range of job weights:
the first set has job weights randomly drawn from the interval U[1,9] and the
second set has job weights randomly drawn from the interval U[1,99].

The models and algorithms were implemented in ILOG Scheduler 6.3. Ex-
periments were run on 2GHz Dual Core AMD Opteron 270 with 2Gb RAM
running Red Hat Enterprise Linux 4. We used an overall time-out of 1200 CPU
seconds for each run. The randomized restart results are the mean over 10
independent runs.

6.3 Results

For this experiment, the dependent variable is the mean relative error (MRE)
relative to the best solution known for the problem instance. The MRE is the
arithmetic mean of the relative error over each run of each problem instance:

1 cla, k,r) — c*(k)

where K is a set of problem instances, R is a set of independent runs with differ-
ent random seeds, ¢(a, k,) is the lowest cost found by algorithm a on instance
k in run r, and ¢*(k) is the lowest cost known for k. As these problem instances
were generated for this experiment, the best-known solution was found either
by the algorithms tested here or by variations used in preliminary experiments.

6.3.1 Chronological Backtracking

Figures 6 and 7 display the results for the two problem sets. The results fall
into two groups: (1) the weighted-sum constraint with any weight mapping
plus (COMP, LAST), and (2) (COMP, BUSY) and (COMP, EACH). The ap-
proaches in the latter group are clearly superior to those in the former. Overall,
(COMP, LAST) appears to be, marginally, the worst performing approach. We
interpret this to be an indication that the drawbacks of last noted above have a
clear impact: on widely spread final activities, the COMPLETION propagation
makes few inferences beyond what weighted-sum can do while incurring a much
higher computational expense. The weighted-sum approaches are all close-to-
identical. This is as we expected given that weighted-sum does not take into
account any interactions between weighted activities.

For any CPU time cut-off less than 1200 seconds, (COMP, EACH) delivers
the lowest MRE of any algorithm on both problem sets followed by (COMP,
BUSY). The benefits appear modest given the formats of the graphs (i.e., a 0.01
decrease in MRE). However, another way to look at these results is based on
the CPU time taken to achieve a particular level of MRE. In Figure 6 (COMP,
EACH) takes less than 300 CPU seconds to achieve the same MRE as the

20

0.1

T
<WS, BUSY> —+—
<WS, LAST> -
<WS, EACH> ---*---
<COMP, LAST> &
<COMP, BUSY> —-=-—

0.08 [<COMP, EACH> ---o--- |
\
\
!
LR
!\l\ \(B\
g &m RS
5 006 o R
> 3
2
< " |
° Lﬁﬂwaﬂggnmmmiiiﬁim
§ oo4 2208, e - -
. feRcYeY =a
= 0000%(GOOO;'liii—im““llrll... S
0000000
€€006000000000
0.02
0
0 200 400 600 800 1000 1200
Time (secs)

Figure 6: The mean relative error for different propagation techniques with
chronological backtracking for the problems with job weight uniformly drawn
from U[1,9]. COMP: uses the COMPLETION constraint, WS: uses the
weighted-sum constraint, LAST: places the job weight on the last activity in
each job, BUSY: places the job weight on the activity of the job that is on the
busiest resource, EACH: places the job weight on all activities of the job.

WS approaches achieve in 1200 CPU seconds: a four-fold improvement. In
Figure 7 the results are a more than six times speed-up. It is also interesting
to observe that (COMP, EACH) out-performs (COMP, BUSY) at each time
point. Even though there are nine more COMPLETION constraints in the each
condition, the substantial reduction in search nodes for a given solution quality
is worthwhile in terms of CPU time. This can be clearly seen in Figure 8, where
the MRE results from Figure 6 are plotted against the number of choice points.
While (COMP, EACH) is only able to make a few more than 2,000,000 choice
points, for the best achieved by (COMP, BUSY), (COMP, EACH) uses less than
one-third of the choice points. To equal the best WS results, (COMP, EACH)
uses one-tenth as many choice points.

6.3.2 Randomized Restart

As noted above, we also experimented with a randomized restart search. Fig-
ure 9 displays the results for the U[1,9]. The UJ[1,99] results (not shown) are
qualitatively similar. Comparing Figures 6 and 9, it is clear that all algorithms
are substantially worse when using randomized restart than chronological back-

21

T
<WS, BUSY> —+—
<WS, LAST> -
<WS, EACH> ---*---
<COMP, LAST> &
<COMP, BUSY> —-=-—
0.08 <COMP, EACH> ---o--- |

o
5] X
< A
= 0.06)

\ G
4 \‘ oo
= Ll Glg,
© QD\. BBBgh
&) a0 R DDE'DD

oty Ry R P
c o®m K EYLEEEE
K 0.04 S B &y Boagd
2 : Sah ey Rk R A AR R R R R R R E B LR RS
iy

©00 "
L2 2 %
°
9ooobooNiNNEENEERERRE RN
0000004000 e aamg
00000000COoC NARENNy g
.-y
°6,
[S3S%e)

0.02

0 200 400 600 800 1000 1200
Time (secs)

Figure 7: The mean relative error for different propagation techniques with
chronological backtracking for the problems with job weight uniformly drawn
from U[1,99]. See the caption of Figure 6 for details.

tracking. In some cases, chronological backtracking with the weaker propaga-
tion substantially out-performs randomized restart with stronger propagation.
Furthermore, the differences among the algorithms are narrowed.

Gomes et al. [19] demonstrated that randomized restart helps search when
the run-times exhibit a heavy-tailed distribution. Such a distribution arises
when the depths of search subtrees with no solution are exponentially dis-
tributed. Gomes et al. also observe that heavy-tailed behaviour is more likely
with sophisticated algorithms that, for example, efficiently employ higher levels
of propagation. The results here are, therefore, somewhat negative with re-
spect to the goals of this work. While the COMPLETION constraint is able to
improve performance over the weighted-sum constraint even with randomized
restart, it does not appear strong enough to induce an exponential depth distri-
bution of failed sub-trees. In other words, it does not provide enough propaga-
tion to induce “easy” sub-trees where the proof of infeasibility is quickly arrived
at. Rather, all sub-trees must be exhaustively searched through.

6.3.3 Discussion

Our primary interest is the comparison between the performance of the ap-
proach employing the COMPLETION constraint and that of the search algo-
rithms using the weighted-sum constraint. These experiments demonstrate that

22

<WSI, BUSY> —+—
<WS, LAST> ---x---
<WS, EACH> ---*---
<COMP, LAST> &
<COMP, BUSY> --m-
0.08 <COMP, EACH> ---o--- |
s
5 006
Qo
2
k]
° 3% -
E 1800 B EEN FHRR s = e
<
o 0.04 -
= EN ' B |
oq 3 A EEEgmm ."iln
\G
]
0.02
0
0 2e+06 4e+06 6e+06 8e+06 1e+07

Choice Points

Figure 8: The mean relative error for different propagation techniques with
chronological backtracking for the problems with job weight uniformly drawn
from UL, 9] plotted versus the choice points in the search tree. Each instance
was run with a 1200 CPU second time limit. See the caption of Figure 6 for
details.

the COMPLETION constraint can be used to improve the problem solving ca-
pabilities of constraint-based scheduling algorithms beyond the single-machine
case with no changes to the underlying algorithm, though with some experimen-
tation to arrive at a good mapping between job weights and activity weights.
The specialized single-machine approaches discussed at the end of Section 5
would require a significant re-engineering and re-implementation to be similarly
adapted to the job shop scheduling problem.

7 Extensions and Future Work

An obvious research direction given the goals of this work is to use the COM-
PLETION constraint to model and solve a variety of optimization problems.
We have been pursuing some problems that require relatively simple modeling
extensions compared to the above work. For example, in Kovécs & Beck [22],
we introduced a constraint-based model of a single-machine scheduling prob-
lem with tool changes using the COMPLETION constraint. The experiments
presented in that paper showed that our approach outperforms other MIP and
customized branch-and-bound methods. Note that later we performed experi-
ments on a different set of instances, where one of the MIP models was more

23

T
<WS, BUSY> —+—
<WS, LAST> -
<WS, EACH> ---*---
<COMP, LAST> &
: <COMP, BUSY> —-=-—

0.08 H <COMP, EACH> --o- |
&
M
5 - vl
0.6 ST : o
[im W OO0 R ot M50 0 56 06 5 008 b 5 5 e
® L ccfeleieiersic it L L S SR
§ A A L LR LR T S Roalaal
[
o
C
S o004
=
0.02
0
0 200 400 600 800 1000 1200

Time (secs)

Figure 9: The mean relative error for different propagation techniques with
randomized restart for the problems with job weight uniformly drawn from
U[1,9]. See the caption of Figure 6 for details.

efficient than our constraint-based approach.

The other research direction which we are pursuing is the generalization of
the COMPLETION constraint from unary to cumulative capacity. We have
defined a generalization as follows:

COMPLETION,,, ([S1, .-y Su], [P15 s Pr], [015 s On)s [W1, ooy wy], R, C)

As with the unary case, the scheduling problem involves n activities A; to be
executed without preemption on a single, cumulative resource. Activities are
characterized by their processing times p;, weights w;, and resource requirements
0i- R stands for the capacity of the resource. The total weighted completion
time of the activities is denoted by C'. Again, we assume that p;, w;, g;, and R
are constants, though this limitation can be easily bypassed by reasoning with
the lower and upper bounds of these parameters. The proposed propagation
algorithm for COMPLETION,,, is based on a novel variable-intensity relaxation
of the cumulative resource scheduling problem. Similarly to the unary case,
the propagator computes a series of relaxed solutions, each with an additional
restriction stating that an activity A; must start at time ¢. Then, if the cost of a
relaxed solution is higher than the current upper bound, then ¢ can be removed
from the domain of the start time variable of the given activity A;. The main
difference between the unary and the cumulative cases is that for the latter, we

24

were unable to define efficient recomputation methods that convert a relaxed
schedule to solutions for each possible value of t. Instead, we only estimate how
the earliest or latest start times must be adjusted to achieve consistency. The
results have been published in the paper [23].

In the same paper, we have applied the COMPLETION,, constraint to
model the container loading problem subject to constraints on the location of
the COG, as noted in Section 1. Again, our initial empirical results appear
promising.

8 Conclusions

In this paper, we propose an algorithm for propagating the COMPLETION
constraint, which represents the sum of weighted completion times of activities
on a single unary capacity resource. The propagation of the constraint exploits
a lower bound arising from the optimal solution to the preemptive mean busy
time scheduling problem. We introduce an algorithm that iteratively recomputes
the lower bound cost for a carefully structured subset of the possible start time
assignments, and filters start time variable domains by removing the values that
would result in a cost higher than the current upper bound.

Empirical results on a set of single resource, minimum weighted comple-
tion time benchmarks show that the COMPLETION constraint significantly
improves the performance of constraint-based approaches to this problem. The
improvement occurs both compared to the classical weighted-sum representa-
tion of the objective function, and also compared to a model using the same
relaxation only as a lower bound. We validate the applicability of the COMPLE-
TTON constraint in more complex problems by experiments on the multiple ma-
chine job shop scheduling problem with the criteria of minimizing total weighted
completion time. Our results show a substantial improvement (i.e., a four to
six times speed up in terms of run-time and an order of magnitude reduction in
the number of choice points) over the standard weighted-sum constraint.

Acknowledgment

The authors acknowledge the support of the Canadian Natural Sciences and
Engineering Research Council, ILOG, S.A., and the OTKA grant K 73376.
A. Kovécs acknowledges the support of the Jdnos Bolyai scholarship No.
BO/00138/07.

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna,
I. Milis, M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approx-
imation schemes for minimizing average weighted completion time with

25

[10]

[11]

release dates. In Proc. of the 40th IEEE Symposium on Foundations of
Computer Science, pages 32—44, 1999.

C. Akkan and S. Karabati. The two-machine flowshop total completion
time problem: Improved lower bounds and a branch-and-bound algorithm.
FEuropean Journal of Operational Research, 159:420-429, 2004.

Ph. Baptiste, J. Carlier, and A. Jouglet. A branch-and-bound procedure
to minimize total tardiness on one machine with arbitrary release dates.
European Journal of Operational Research, 158:595-608, 2004.

Ph. Baptiste and C. Le Pape. Scheduling a single machine to minimize a
regular objective function under setup constraints. Discrete Optimization,
2:83-99, 2005.

Ph. Baptiste, L. Peridy, and E. Pinson. A branch and bound to minimize
the number of late jobs on a single machine with release time constraints.
European Journal of Operational Research, 144(1):1-11, 2003.

J. C. Beck and P. Refalo. A hybrid approach to scheduling with earliness
and tardiness costs. Annals of Operations Research, 118:49-71, 2003.

H. Belouadah, M. E. Posner, and C. N. Potts. Scheduling with release dates
on a single machine to minimize total weighted completion time. Discrete
Applied Mathematics, 36:213-231, 1992.

H. Belouadah and C. N. Potts. Scheduling identical parallel machines to
minimize total weighted completion time. Discrete Applied Mathematics,
48:201-218, 1994.

B. Chen, C. N. Potts, and G. J. Woeginger. A Review of Machine Schedul-
ing: Complexity, Algorithms and Approximation, volume 3 of Handbook of
Combinatorial Optimization. Kluwer, 1998.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61-95, 1991.

F. Della Croce, M. Ghirardi, and R. Tadei. An improved branch-and-bound
algorithm for the two machine total completion time flow shop problem.
FEuropean Journal of Operational Research, 139:293-301, 2002.

S. Demassey, G. Pesant, and L.-M. Rousseau. A cost-regular based hybrid
column generation approach. Constraints, 11(4):315-333, 2006.

A. Drexl and A. Kimms. Lot-sizing and scheduling — survey and extensions.
FEuropean Journal of Operational Research, 99:221-235, 1997.

M. Dyer and L. A. Wolsey. Formulating the single machine sequencing
problem with release dates as mixed integer program. Discrete Applied
Mathematics, 26:255-270, 1990.

26

[15]

[18]

[19]

[20]

F. Focacci, A. Lodi, and M. Milano. Embedding relaxations in global
constraints for solving TSP and TSPTW. Annals of Mathematics and
Artificial Intelligence, 34(4):291-311, 2002.

F. Focacci, A. Lodi, and M. Milano. Optimization-oriented global con-
straints. Constraints, 7(3-4):351-365, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang.
Single machine scheduling with release dates. SIAM Journal on Discrete
Mathematics, 15(2):165-192, 2002.

Carla P. Gomes, Cesar Ferndandez, Bart Selman, and Christian Bessiere.
Statistical regimes across constrainedness regions. Constraints, 10(4):317—
337, 2005.

A. Jouglet, P. Baptiste, and J. Carlier. Branch-and-bound algorithms for
total weighted tardiness. In Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, chapter 13. Chapman & Hall / CRC, 2004.

A. Kéri and T. Kis. Primal-dual combined with constraint propagation
for solving rcpspwet. In Proc. of the 2nd Multidisciplinary International
Conference on Scheduling: Theory and Applications, pages 748-751, 2005.

A. Kovéacs and J. C. Beck. Single-machine scheduling with tool changes:
A constraint-based approach. In PlanSIG 2007, the 26th Workshop of the
UK Planning and Scheduling Special Interest Group, pages 71-78, 2007.

A. Kovécs and J. C. Beck. A global constraint for total weighted comple-
tion time for cumulative resources. FEngineering Applications of Artificial
Intelligence, 21(5):691-697, 2008.

C. Le Pape, P. Couronné, D. Vergamini, and V. Gosselin. Time-versus-
capacity compromises in project scheduling. In Proceedings of the Thir-
teenth Workshop of the UK Planning Special Interest Group, 1994.

M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, 47:173-180, 1993.

R. Nessah, F. Yalaoui, and C. Chu. A branch-and-bound algorithm to
minimize total weighted completion time on identical parallel machines
with job release dates. Computers and Operations Research, 35(4):1176—
1190, 2009.

Y. Pan. Test instances for the dynamic single-machine sequencing prob-
lem to minimize total weighted completion time, 2007. Available at
www.cs.wisc.edu/ “yunpeng/test/sm/dwct /instances.htm.

27

[28]

Y. Pan and L. Shi. New hybrid optimization algorithms for machine
scheduling problems. IEEE Transactions on Automation Science and En-
gineering, 5(2):337-348, 2008.

J.-C. Régin. Arc consistency for global cardinality constraints with costs. In
Proceedings of Principles and Practice of Constraint Programming (LNCS
1713), pages 390-404, 1999.

J.-C. Régin. Global constraints and filtering algorithms. In M. Milano, ed-
itor, Constraint and Integer Programming: Toward a Unified Methodology,
pages 89-135. Kluwer, 2003.

J.-C. Régin and M. Rueher. Inequality-sum: a global constraint capturing
the objective function. RAIRO Operations Research, 39:123-139, 2005.

Scheduler. ILOG Scheduler 6.1 Reference Manual. ILOG, S.A., 2002.

A. S. Schulz. Scheduling to minimize total weighted completion time: Per-
formance guarantees of lp-based heuristics and lower bounds. In Proc. of
the 5th Int. Conf. on Integer Programming and Combinatorial Optimiza-
tion, pages 301-315, 1996.

M. Sellmann. An arc consistency algorithm for the minimum weight all
different constraint. In Proceedings of Principles and Practice of Constraint
Programming (LNCS 2470), pages 744-749, 2002.

J.M. van den Akker, C.A.J Hurkens, and M.W.P. Savelsberg. Time-indexed
formulations for machine scheduling problems: Column generation. IN-
FORMS Journal on Computing, 12:111-124, 2000.

J.P. Watson, L. Barbulescu, A.E. Howe, and L.D. Whitley. Algorithms
performance and problem structure for flow-shop scheduling. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence (AAAI-99),
pages 688-695, 1999.

28

