
Constraint Programming Approach to a Bilevel

Scheduling Problem

András Kovács, Tamás Kis
Computer and Automation Research Institute

Hungarian Academy of Sciences
E-mail addresses: {andras.kovacs,tamas.kis}@sztaki.hu

March 4, 2010

Abstract

Bilevel optimization problems involve two decision makers who make
their choices sequentially, either one according to its own objective func-
tion. Many problems arising in economy and management science can be
modeled as bilevel optimization problems. Several special cases of bilevel
problem have been studied in the literature, e.g., linear bilevel problems.
However, up to now, very little is known about solution techniques of
discrete bilevel problems. In this paper we show that constraint program-
ming can be used to model and solve such problems. We demonstrate our
first results on a simple bilevel scheduling problem.

Keywords: Scheduling, bilevel programming, constraint modeling, QCSP

1 Introduction

Bilevel programming deals with decision and optimization problems whose out-
come is determined by the interplay of two self-interested decision makers who
decide sequentially. First, the decision maker called the leader makes its choice.
Then, in view of the leader’s decision, the follower chooses its response. Either
decision maker aims at minimizing (maximizing) its own objective function. In
the general case, the objective values mutually depend on the choices of the
other party. Technically, the follower’s role can be seen as solving a parametric
optimization problem, whose parameters are determined by the leader. The
particularly interesting situation is that of the leader, who is assumed to have
a complete knowledge of the follower’s constraints, objective, and input data.
He endeavors to find his best choice subject to the response that he can expect
from the self-interested follower. In the optimistic (pessimistic) case the leader
assumes that the follower chooses from the set of its optimal responses the one
that is the most (least) favorable for the leader.

1

Formally, the set of all variables in the problem is partitioned into two sets:
the leader’s variables X, and the follower’s variables Y . The leader can assign
values to X, while the follower decides about Y , and it is assumed that all
variables have finite domains. The leader aims at minimizing f subject to the
constraint set C and the follower’s optimality condition, which states that the
follower will minimize g subject to D. Also, the leader must avoid the values of
X for which the follower’s response does not satisfy C. Throughout the paper we
assume that both the leader and the follower try to minimize their objectives,
though, the same techniques can be used for maximization or mixed problems
as well. Hence, the optimistic bilevel problem can be formulated as:

min
X,Y

f(X,Y) (1)

subject to
C(X,Y) (2)
Y ∈ arg min

Y ′
(g(X,Y ′) | D(X,Y ′)) (3)

In formula (3), the operator arg min refers to the set of all optimal solutions of
the problem at hand. Moreover, the pessimistic case of the problem is described
as:

min
X

max
Y

f(X,Y) (4)

subject to
C(X,Y) (5)
Y ∈ arg min

Y ′
(g(X,Y ′) | D(X,Y ′)). (6)

Bilevel programming techniques can be applied to model various decision
problems of actors in customer-producer relations, in competition, or at various
levels of an organizational hierarchy. Despite this, well-founded theoretical re-
sults are known for special cases of bilevel problems only. These include various
exact and heuristic approaches to linear bilevel problems (where all constraints
and both objective functions are linear expressions over continuous variables),
and mostly heuristic methods for other cases, such as bilinear problems [13].
The papers [12, 14] address problems where the follower’s variables can take
discrete values. For (fully) discrete bilevel problems, which are in the focus of
this study, only sporadic application results are available, see [22, 26]. Also, to
the best of our knowledge, this paper is the first to investigate the solution of
bilevel optimization problems using constraint programming (CP) techniques.

1.1 A motivating example

The classical approach in management science assumes that the different de-
partments of the same company, although have individual decision roles and

2

responsibilities, subsume their interest to the same global objective. This ob-
jective is related to maximizing the long-term profit of the company. The reality
is often different: the performance of each department is evaluated using, and
rewarded based on, a different performance measure. These performance mea-
sures are only distantly related to the global objective of the company, and are
often conflicting. Hence, a relevant alternative model of the joint operation of
several departments is using multilevel programming techniques [4]. A simple
case study is presented below.

Consider the bilevel scheduling problem where the management of the com-
pany (the leader) is responsible for order acceptance and the workshop foreman
(the follower) decides on the execution sequence of the tasks corresponding to
accepted orders. The leader has no direct influence on the sequencing decisions.
Formally, there is a set of tasks T , some of which will have to be scheduled on a
single unary resource. Task j is characterized by its processing time pj , release
time rj , and deadline dj . The difference between the profit if j is executed on
time and the loss of reputation if it is rejected is captured by the cost (or task
weight) w1

j to be paid if the task is rejected. A solution is acceptable for the
leader only if all the accepted tasks are completed on time. The leader must
select the tasks that will be actually executed: the binary variable xj is 1 if
task j is accepted and 0 if rejected. The objective of the leader is to minimize∑

j w
1
j (1− xj) subject to the temporal constraints.

The sequencing decisions are made by the follower, who aims at minimizing
the total weighted completion time of the tasks selected by the leader, i.e.,
{j | xj = 1}. The start and completion times of tasks j are denoted by Sj

and Cj , respectively, and the relation Sj + pj = Cj holds. The task weights
w2

j that express the importance of tasks for the follower are independent from
the leader’s task weights w1

j . We assume that the follower observes the release
times, but the organizational relations within the company are such that the
leader cannot force the follower to obey the deadlines. Hence, it might happen
that a set of tasks could be scheduled on time, but the follower prefers to execute
them in a sequence that violates some deadlines. Such task sets do not lead to
feasible solutions of the bilevel problem.

Using the classical three-field scheduling notation [18], the follower’s problem
corresponds to a parametric version of 1|rj |

∑
j w

2
jCj . The first field of the

notation specifies the machine environment; in our case number 1 stands for a
single machine problem. The second field defines the constraints on activities;
they are subject to individual release dates (rj) in this problem. Finally, the
third field states that the optimization criterion is the total weighted completion
time of the tasks (

∑
j w

2
jCj). In our bilevel problem, this widely studied problem

is parameterized with variables xj , which decide the set of tasks to be considered
by the follower.

This sample problem is a special type of bilevel problems where the leader’s
objective depends only on the leader’s variables. However, the feasibility of a
solution depends on the follower’s response as well. For further examples from
the scheduling domain, see Section 2.

3

1.2 Structure of this paper

The remainder of this paper is organized as follows. First, we review the related
literature. After making the necessary definitions and presenting some basic
theoretical results (Section 3), we introduce a generic CP approach to discrete
bilevel optimization problems (Section 4). In Section 5 we illustrate the use
of those techniques on the sample scheduling problem. Finally, we present
experimental results in Section 6, and then conclude the paper.

2 Related literature

A number of different approaches in optimization deal with situations where
the decision maker has only limited control of the problem at hand. Stochastic
programming [31] considers random events occurring with known probability,
and aims at optimizing the expected performance. Quantified problem solving
looks at finding strategies for all possible actions of an adversary. In contrast,
bilevel programming assumes a self-interested adversary with completely known
objectives, and wishes to find a solution with the assumption that the adversary
acts rationally.

2.1 Applications of bilevel programming

Probably the earliest example and a motivation of bilevel optimization prob-
lems came from economic game theory. In a two-player Stackelberg game two
competing firms, the market leader and a follower company, for example a new
entrant, produce equivalent goods. The firms decide their production quanti-
ties sequentially, which together determine the market price, with the aim of
maximizing their own profit [13].

The application of bilevel programming to the coordination of multi-divisio-
nal organizations has been proposed in [4]. The approach is illustrated on a case
study of three divisions of a paper company. The divisions are responsible for
different stages of processing the paper, hence, the end product of one division
serves as raw material for another division. Each division can decide to buy
or sell on the outside market or from/to another division. The objective of
the corporate unit is to set the internal transfer prices in such a way that the
optimal decisions on the divisional level coincide with the corporate optimum.
This problem can be encoded into a linear bilevel problem, and solved by known
algorithms from the literature.

There exist a few application areas of discrete bilevel problems, and espe-
cially bilevel scheduling. In [26], the production planning problem of a pharma-
ceutical company is considered, while [22] studies a bilevel problem that may
arise in flow shop scheduling. These papers take a relatively straightforward
solution approach: they enumerate (a part of) the leader’s possible choices, and
for each choice, compute the follower’s response. Brown et al. [8] investigate
a bilevel project scheduling problem where the objective of the decision maker
is to cause maximal delay of its adversary’s project, which is given as a PERT

4

network. The interdictor can buy delays, while the project owner can buy speed-
ups on some arcs of the network from their limited budget. In [23], we present
basic complexity and algorithmic results for bilevel scheduling problems.

Various other bilevel optimization problems arise naturally in economy and
management science. Perhaps the most widely discussed example is the toll
setting problem in a network, e.g., in a system of regional highways [24]. The
owner of the network (the leader) seeks for the optimal pricing of each link
in the network so as to maximize its profit. The follower corresponds to the
ensemble of the users of the network. A fixed amount of users belong to each
origin-destination pair, and each user selects the path that minimizes his costs,
composed of the travel time and the tolls to pay. Many variations of this basic
problem have been investigated, including problems where tolls or traffic signs
are set by the local authorities who wish to control the movement of hazardous
materials or consider other environmental effects [27]. Another typical applica-
tion is the optimization of chemical processes. Here, the follower’s optimality
condition describes that the steady-state result of a chemical reaction is an
equilibrium where the reacting substances reach their energy minimum [10].

2.2 Related problems in CP

In constraint programming, a problem class strongly related to bilevel program-
ming is the class of quantified constraint satisfaction problems (QCSPs), and
their optimization versions, quantified constraint optimization problems (QCOPs)
[5, 17]. While a classical constraint program corresponds to evaluating a for-
mula that contains existentially quantified variables only (e.g., ∃x∃y C(x, y)),
in QCSP it is allowed to have universally quantified variables as well (e.g.,
∃x∀y C(x, y)). In papers [5] and [7], the basic QCSP and QCOP language
has been extended with restricted quantification, resulting in the QCSP+ and
QCOP+ languages. A sample QCSP+ formula is ∃x∀y[L(x, y)] C(x, y), which
contains the restricted quantifier ∀y[L(x, y)]. This reads ”for all y such that
L(x, y) it holds that...”. It is easy to show that a QCSP+ formula can be
translated into a QCSP formula with negation and disjunction.

A number of QCSP solvers have been proposed in the literature, including
the open-source QCOP+ solver called QeCode by Benedetti at al. [2], built
on the top of Gecode [1]; QCSP-Solve, a solver partly motivated by ideas from
QBF-solving by Gent et al. [16]; and the bottom-up solver BlockSolve by Verger
& Bessière [36].

We are aware of two applications of QCSP to scheduling problems. Benedetti
et al. [6] present a QCSP+ model of a scheduling game in which an adversary
can change some task parameters–e.g., the resource requirement of some tasks
subject to a limit on the overall increase of requirements. The objective is to find
a robust schedule that remains feasible whatever actions the adversary takes.
Nightingale [29] presents a QCSP model for job-shop scheduling with the risk
of machine breakdowns. We will investigate the relation of bilevel programming
to QCSP in detail in the next section.

Another related problem is the class of adversarial constraint satisfaction

5

problems (ACSP) [9]. ACSP can be used to model games played by n agents
with potentially conflicting interests that consist of a fixed number of rounds.
The number of rounds equals the number of variables in the ACSP, which is
typically much larger that the number of agents. The main difference between
ACSP and bilevel programming is that in ACSP in each round the forthcoming
agent is free to choose an arbitrary variable to instantiate, i.e., variables are not
assigned to agents a priori. Also, in ACSP, all agents must satisfy the same
set of constraints, although in theory it is possible to incorporate a measure of
constraint violations into the optimization criteria of each agent.

2.3 Bilevel problems in game theory

The presence of two self-interested decision makers make bilevel programming
interesting from the game theoretical point of view as well. The optimal so-
lution of an optimistic (pessimistic) bilevel program corresponds to a weak
(strong) Stackelberg equilibrium [34]. As opposed to the classical Nash equi-
librium for continuous games, Stackelberg equilibrium refers to games with
turns. Also, Stackelberg equilibrium is different from subgame perfect equi-
librium (SPE) [37], since SPE requires the strategy to cover all possible moves
of the opponent, not only its optimal ones. The original concept of Stackelberg
has been extended to an oligopolistic market with one leader and N followers by
Sherali et al [33]. In that model the followers reach an equilibrium solution in
the market of a single homogeneous product and the leader, supplying the same
product without any collusion with the other firms, sets the production levels
in an optimal (profit maximizing) fashion by explicitly considering the reaction
of the other firms to its output variations. This model leads to a mathematical
program with equilibrium constraints, and the latter area has a rich literature.

2.4 Solution techniques applied

In our work we rely on known techniques of constraint programming and oper-
ations research, and adapt these to bilevel problems. For a detailed presenta-
tion of the applied constraint propagation algorithms and search techniques the
reader is referred to [3, 32].

We note that the applied decomposition to a master problem and a subprob-
lem resembles the (logic-based) Benders decomposition approach to single-level
problems [19]. However, a substantial difference is that in the single level Ben-
ders case one is free to choose the separation of the master and the subproblem
as it is the most efficient computationally, whereas in the bilevel case the sepa-
ration comes from the problem definition. This implies that for bilevel problems
it can be rather challenging to feedback strong cuts (or constraints) from the
subproblem to the master problem.

6

3 Basic properties of discrete bilevel problems

In this section we analyze basic properties of discrete bilevel problems. First,
we give a closer look at the potential definitions of the follower’s optimality
condition. Then, we demonstrate that bilevel problems differ substantially from
single level problems with a single or multiple objectives, whereas they are more
related to quantified constraint satisfaction problems. Finally, we investigate
how the bilevel problem can be relaxed to a single level problem, and address
the computational complexity of bilevel problems.

3.1 On the optimistic and pessimistic cases

The optimistic and pessimistic formulations of the bilevel problem, shown in
formulae (1-3) and (4-6), respectively, capture two different standpoints of the
leader. This difference is relevant in problems where the follower can have several
optimal solutions, and these differ essentially from the viewpoint of the leader:
only some of them satisfy C or they incur different costs f . The optimistic
formulation assumes that the leader is allowed to choose one from the follower’s
optimal solutions, or, equivalently, the follower is friendly enough to choose an
optimal response that satisfies C and minimizes f , if there exists one.

In contrast, in the pessimistic case, the leader wishes to safeguard against the
risks of an unfavorable follower response by assuming that the follower selects its
optimal response that is the least favorable for the leader. There are two possible
interpretations of the pessimistic formulation (4-6) used in the literature. Both
approaches consider a response from the follower’s optimal set that maximizes f .
However, the first interpretation allows the follower to choose a response that
violates C [35], whereas the second interpretation assumes that the follower
must select a response satisfying C, if there exists one [13]. In the first case,
which we call the hard pessimistic formulation, the leader must select values for
X in such a way that all optimal solutions of the follower satisfies C. This is not
necessary in the second, so-called soft pessimistic formulation. It must be noted
that in most of the existing applications of bilevel programming the constraint
set C is empty, and therefore the two pessimistic cases are equivalent.

In the core of this paper, we focus on the optimistic case. At the same
time, we note that the similar techniques can be used for the pessimistic case.
The necessary, minor changes in the algorithmic details will be discussed in
Section 4.5.

3.2 Bilevel versus single level problems

Below we demonstrate the difference of the single level and the bilevel problems
on an instance of our sample problem presented in Figure 1. In the single
level case, the leader could accept all the four tasks and process them, e.g., in
the order (1, 2, 3, 4). In the bilevel case, the leader only chooses the tasks to
process, but the follower sequences them. If the leader selects all tasks, then the
follower’s response is the solution of the corresponding 1|rj |

∑
j w

2
jCj problem,

7

i.e., the sequence (4, 3, 2, 1). This solution is infeasible, because task 1 violates
its deadline. In fact, the optimal bilevel solution is selecting the tasks {1, 2, 3},
and processing them in the order (1, 3, 2), which respects all deadlines. An
interesting, seemingly paradoxical situation is that the strictly smaller set of
tasks {1, 2} cannot be scheduled, because the follower’s response, (2, 1), violates
the deadline of task 1. This also warns us that inference methods that work for
the single level case might not generalize to the bilevel problem.

Task j pj rj dj w1
j w2

j

1 1 0 1 2 1
2 2 0 100 2 4
3 1 1 100 2 20
4 1 0 100 1 5

2

2 30

13 2

2 40

1

1

3 2

2 40

1

1

4

5

Figure 1: A bilevel problem instance and the follower’s response for various
choices of the leader. The tasks marked with a thick frame in the schedules
violate their deadlines.

3.3 Bilevel versus bicriteria approaches

Although both bilevel programming and single level bicriteria approaches seek
for solutions that are attractive w.r.t. two different objective functions, the two
approaches differ essentially. They model two different situations: bicriteria
optimization looks for the best compromise in a centralized way, while bilevel
optimization follows a simple, hierarchical protocol with two autonomous part-
ners, each interested in optimizing its own objective value. Indeed, the optimal
solution of the bilevel problem might not be Pareto optimal for the correspond-
ing single level bicriteria problem, and vice versa. Below we illustrate this
phenomenon on our sample problem.

Consider the problem instance presented in Figure 2. The candidate task
sets to be scheduled are {1}, {2}, {3}, and {1, 2}, and it is easy to see that
no other task set can be scheduled to meet the deadlines. A Pareto optimal
schedule is (1, 2), denoted by S1, which leads to objective values f = 3 and
g = 7. Observe that schedule S1 is not a feasible solution of the bilevel problem:
if the leader decided to accept tasks {1, 2}, then the follower would sequence
these according to (2, 1), resulting in schedule S2. However, S2 violates the
leader’s deadline constraint on task 1, and hence, it is not a feasible solution
of the bilevel problem. In fact, the optimal bilevel solution is the schedule (3),
called S3, which has f = 4 and g = 20. The leader prefers S3 to {1} and {2} as

8

Task j pj rj dj w1
j w2

j

1 1 0 1 2 1
2 1 0 2 2 3
3 2 0 2 3 10

1 2

S
1

3

1 20

S
3

S
2

2 1

1 20 20

Schedule f g Feasibility Optimality
S1 3 7 Feasible Pareto optimal
S2 3 5 Infeasible, task 1 violates deadline -
S3 4 20 Feasible Bilevel optimal

Figure 2: Difference of the bilevel and the bicriteria Pareto optimal solutions.
The figure presents a problem instance and its three different solutions.

well. Note that S1 Pareto dominates S3, which means that the bilevel optimal
solution is Pareto dominated.

3.4 Bilevel programming versus QCSP

As it has been described above, the main difference between QCSP and bilevel
programming is that in QCSP, one wishes to find a strategy that covers all
possible actions of the adversary, whereas in bilevel programming we assume
that the follower will act rationally according to its known objectives. Now we
show that bilevel programs can be translated into a QCOP+ with a single pair
of quantifiers ∃�∀� and vice versa. We assume that the function symbols f and
g and the relation ≤ is available in the constraint language.

First, note that the optimistic bilevel problem corresponds to the QCOP+

min
X,Y
{f(X,Y) | C(X,Y) ∧ D(X,Y) ∧

∀Y ′[D(X,Y ′)] g(X,Y) ≤ g(X,Y ′)}.

Here, the first line of the formula describes that 〈X,Y 〉 is a feasible solution,
while the second line states that 〈X,Y 〉 is an optimal response of the follower,
because all the alternative responses Y ′ would result in a greater or equal value
of g. Furthermore, the hard pessimistic bilevel problem can be rewritten as

9

min
X,Y
{f(X,Y) | C(X,Y) ∧ D(X,Y) ∧

∀Y ′[D(X,Y ′)] g(X,Y) ≤ g(X,Y ′)∧
∀Y ′′[D(X,Y ′′) ∧ g(X,Y) = g(X,Y ′′)]

C(X,Y ′′) ∧ f(X,Y) ≥ f(X,Y ′′)}.

Similarly to the optimistic case, the first and second lines describe that the
solution 〈X,Y 〉 is feasible and optimal for the follower. The third and fourth
lines encode the hard pessimistic assumption, i.e., that all the optimal responses
of the follower Y ′′ must satisfy C and result in a value of f not worse than
f(X,Y). Note that the QCOP+ equivalent of a soft pessimistic bilevel program
can be derived from the above formula by omitting C(X,Y ′′) from the last line.

Although translation to QCOP+ is a theoretically sound approach to solv-
ing bilevel problems, it can be rather inefficient. The main deficiency of the
approach is that the computed strategy must cover all possible decisions of the
follower explicitly. To verify these claims, we have implemented our sample
problem in QeCode. Experimental results are presented in Section 6.

3.5 The single level relaxation

Various components of the solution algorithms for bilevel problems rely on well
understood techniques for single level problems. Therefore, it seems natural
to look for relations between bilevel and single level problems. The simplest
way of reduction is to let the leader decide on every variable, and completely
disregard the existence of the follower. The resulting problem will be called the
single level relaxation of the bilevel problem, and its solution value is obviously
a lower bound on the bilevel solution cost:

Definition 1 The single level relaxation of a bilevel program is, using the set
of all variables X ′ = (X,Y), the problem min{f(X ′) | C(X ′) ∧D(X ′)}.

3.6 Computational complexity

Bilevel problems are complex optimization problems, they often belong to a
higher complexity class than their corresponding single level relaxations. For
example, linear bilevel problems (where both the single level relaxation and the
follower’s subproblem is a linear program) are known to be NP-complete [13].
Here, we focus on the complexity of decision versions of discrete bilevel problems,
especially in the case where the (decision version of the) single level relaxation
is NP-hard. It is easy to observe that a bilevel problem is–except for degenerate
cases–at least as complex as its single level relaxation, hence, NP-hard. On the
other hand, discrete bilevel problems are in PSPACE, because all instantiations
of the variables can be enumerated and evaluated in polynomial space using
a recursive algorithm, similarly to the algorithm defined for solving quantified
boolean formulae in [15].

10

Now, a discrete bilevel program may or may not belong to NP. It is easy
to define discrete bilevel problems with an NP-compete follower’s subproblem
that are outside NP. Consider an unconventional, but valid bilevel schedul-
ing problem where all variables belong to the follower. Both the leader and
the follower aim at sequencing the set of tasks on a single machine subject
to release times rj and strict deadlines dj . However, the leader would be inter-
ested in minimizing

∑
Cj , whereas the follower minimizes the weighted earliness

penalty
∑
wj(dj−Cj). This problem is NP-hard, because with follower weights

wj ≡ 0, all solutions are equivalent for the follower, and hence, the optimistic
bilevel problem corresponds to the classical 1|rj , dj |

∑
Cj problem, which is

NP-hard [25]. On the other hand, it is also co-NP-hard, because with follower
weights wj ≡ 1 the two criteria are the negatives of each other. Hence, verifying
the feasibility of a bilevel solution is equivalent to proving that no better solu-
tion exists for the follower’s NP-hard subproblem, 1|rj , dj |

∑
wj(dj−Cj). Since

the bilevel problem is both NP-hard and co-NP-hard, it is outside NP (unless
P=NP).

The above complexity results indicate that no direct encoding of discrete
bilevel problems into CP or MIP can be expected. For the case of our main
sample problem, we were not able to prove that it is outside NP, but we conjec-
ture that it is, since no trivial certificate seems to exist for a positive answer.

4 Modeling and solving bilevel problems by CP

In this section we first present a generic approach to solving discrete bilevel
optimization problems by CP. Then, we introduce several algorithmic techniques
to improve the efficiency of the solver. Each of the subsections has a counterpart
in the Section 5, where the use of the given technique is illustrated on the sample
scheduling problem. Unless stated otherwise, we consider the optimistic bilevel
problem.

We use the notation Dom(X) for the current domain of a CP variable Z.
Furthermore, the minimum and maximum values in Dom(X) will be denoted
by Ž and Ẑ, respectively.

4.1 The basic constraint model

Given the discrete optimistic bilevel problem as described in formulae (1-3), let
us define an equivalent constraint program that encodes the problem from the
leader’s point of view. We also call it the master problem. The decision variables
are both X and Y . They are subject to constraints C and COpt, where C is
the set of the leader’s constraints, and COpt describes the follower’s optimality
condition:

min
X,Y
{ f(X,Y) | C ∧ COpt},

where
COpt : Y ∈ arg min

Y ′
{g(X,Y ′) | D(X,Y ′)}.

11

The optimization problem contained in COpt is called the follower’s subprob-
lem. We assume that C is a set of classical constraints over finite-domain vari-
ables, which have appropriate propagation algorithms defined in the literature.
In contrast, in the generic case, constraint COpt contains the parametric version
of an NP-hard discrete optimization problem. Hence, there is little hope that
algorithms readily available in the literature can be applied to propagate it, or
generalized arc-consistency can be achieved efficiently. Therefore, we propose to
settle for a generate-and-test approach for propagating COpt, i.e., to propagate
only when all of the leader’s variables X become bound. The pseudo-code of the
propagation algorithm is presented in Figure 3. The algorithm first determines
the follower’s minimum cost, g∗ (line 3), or returns the symbol ’no solution’ if
no feasible solution exists. Then, it computes the follower’s response according
to the optimistic assumptions, Y + (line 6). Both of these steps require solving
the follower’s subproblem with known parameters X. Exact solution approach,
e.g., CP search must be used, since the bilevel problem formulation requires
finding exact optimum. When solving the follower’s subproblem in lines 3 and
6, the domains of Y in the master problem must be ignored, since those do-
mains are corrupted by the propagators of C, i.e., constraints that the follower
disregards.

PROCEDURE Propagate C Opt()

1 IF X is not bound

2 RETURN

3 LET g∗ := minY ′{g(X, Y ′) | D(X, Y ′)}
4 IF g∗ = ’no solution’
5 Fail

6 LET Y + := arg minY ′{f(X, Y ′) | g(X, Y ′) = g∗ ∧ C(X, Y ′) ∧D(X, Y ′)}
7 IF Y + = ’no solution’
8 Fail

9 Instantiate Y ← Y +

Figure 3: Algorithm for propagating constraint COpt.

Regarding search techniques for the master problem, we propose to perform
any kind of search, exact or non-exact, in the space of the instantiations of the
leader’s variables. It is not necessary to consider the follower’s variables, since
values will be assigned to them by constraint COpt.

4.2 Lifting the follower’s constraints and dominance rules
into the master problem

The above basic CP formulation can be strengthened by adding redundant con-
straints that propagate even when a part of the variables X is not bound. First,
observe that the constraint set D can be added to the basic model, because it

12

reduces the search space to values of X that have at least one feasible follower
response. Furthermore, assume that there are weak dominance rules known for
the follower’s sub-problem, i.e., properties that all optimal solutions of the sub-
problem must satisfy. Then, the conjunct of these rules can be encoded into a
constraint CDom, and added to the CP model as a redundant constraint. Hence,
the following CP model is a sound representation of the bilevel problem, and it
leads to stronger propagation than the basic model:

min
X,Y
{ f(X,Y) | C ∧D ∧ COpt ∧ CDom}.

4.3 Bounds on the follower’s cost

Below we present a novel technique that prunes the search tree based on the
difference of the constraint sets that the leader and the follower must satisfy.
We will characterize the values that g can take in solutions that are feasible
for the leader, as well as the values that g can take in optimal responses of the
follower. Clearly, if the two ranges do not overlap, then there is no feasible
bilevel solution in the current branch of the search tree.

Let UB denote the value of the best known solution, and let us characterize
the current branch of the search tree by the domain of X, denoted by Dom(X).
Any feasible improving solution of the master problem must obey C, D, and
f < UB. Hence, a valid lower bound gLmin on the values g in the solutions that
are acceptable for the leader in the current branch is:

gLmin = min
X′∈Dom(X)

min
Y
{g(X ′, Y) |

C(X ′, Y) ∧ D(X ′, Y) ∧ f(X ′, Y) < UB}.

On the other hand, for any fixed leader’s choice in this branch, the follower
will return a response that minimizes g subject to D. By taking the maximum
of these minimum values, we get an upper bound gFmax on g in the solutions
that are acceptable for the follower in the current branch:

gFmax = max
X′∈Dom(X)

min
Y
{g(X ′, Y) | D(X ′, Y)}.

Note that the constraints in the definition of gFmax are a subset of the
constraints for gLmin, and therefore gFmax < gLmin can occur. This means
that no solution in the current branch of the search tree is both feasible for the
leader and optimal for the follower. At the same time gFmax ≥ gLmin is also
possible, since gFmax is a maximin, whereas gLmin is a minimum.

Lemma 1 If gFmax < gLmin, then the current search branch contains no fea-
sible improving bilevel solution, and therefore it can be fathomed.

13

In general, it is difficult to compute the exact values of gFmax and gLmin. In-
stead, an upper estimate of gFmax, denote by ĝFmax can be used, and similarly,
a lower estimate of gLmin, denoted by ǧLmin can be applied.

Finally, note that the application of the above bounds makes sense in the
leaves of the search tree as well, since they may prove the infeasibility of the
leaf faster than solving the follower’s subproblem in an exact way.

4.4 Lower bounds on the leader’s cost

In theory, it is straightforward to apply the classical lower bounding technique
of operations research to bilevel problems: let f̌ be a lower bound and f̂ an
upper bound, typically the value of the best known solution. Now, if f̌ ≥ f̂
then the current branch of the search tree does not contain a feasible improving
solution. In practice, the effective use of this technique is challenging, because
good lower bounds for bilevel problems are rarely available from the literature.
A possible approach is using the single level relaxation, whose solution imposes
a lower bound on the bilevel problem. If the single level relaxation is still
intractable, then it can be relaxed further. We note that the value of the single
level relaxation is often far from the optimal solution of the bilevel problem.

4.5 Extension to the pessimistic case

The models and algorithms for the optimistic case can be extended easily to the
pessimistic case. The extension requires modifying the propagator of COpt. In
the soft pessimistic case, the function min in line 6 of Figure 3 must be replaced
with max as follows:

6 LET Y + := arg maxY ′{f(X, Y ′) | g(X, Y ′) = g∗ ∧ C(X, Y ′) ∧D(X, Y ′)}

In the hard pessimistic case, in addition to the above change, the following lines
must be inserted after line 5 (outside the IF-THEN branch of lines 4-5) to ensure
that the follower does not have an optimal solution that violates C:

5a IF there exists an Y ′ such that {g(X, Y ′) = g∗ ∧ C̄(X, Y ′) ∧D(X, Y ′)}
5b Fail

In line 5a, the expression C̄ stands for the negation of C, i.e., C̄ = ∨c∈C¬c.
Hence, C̄ corresponds to a reified constraint. We note that the use of reified
constraints in C̄ makes the CP approach substantially less efficient for hard
pessimistic problems, and may limit the applicable constraints depending on
the solver used. The enhancements presented in Sections 4.2-4.4 can be applied
without any change.

14

5 Modeling and solving the scheduling problem

5.1 The basic constraint model

The basic constraint model of our scheduling problem contains n binary vari-
ables xj to denote if task j is scheduled, and n optional activities with start
and end time variables. The activities are subject to a unary resource and time
window constraints, and the follower’s optimality constraint. The objective
function is expressed as f =

∑
j w

1
j (1 − xj) using a weighted sum constraint.

Our search strategy selects in each node the task j whose xj variable is unbound
and has the greatest w1

j . Then, it creates two children of the node according to
xj = 1 (left branch) or xj = 0 (right branch).

The follower’s optimality constraint is a custom developed constraint, which
embeds a constraint-based solver for the 1|rj |

∑
w2

jCj problem. The naive con-
straint model with a unary resource constraint, release time constraint, and the
cost expressed using a weighted sum constraint is used. A classical chronological
schedule-or-postpone search strategy (called setTimes in Ilog) is used, and the
subproblem solver also includes dominance rules from [20].

5.2 Lifting the follower’s dominance rules into the master
problem

A number of efficient dominance rules are known for the 1|rj |
∑
w2

jCj problem,
see, e.g., [20]. However, the condition side of most of these rules is too complex
to fire when only the xj variables are bound, and very little is known about the
task start times or the order. We lifted the following simple dominance rule to
the master problem. Without loss of generality we can assume that tasks are
indexed in the weighted shortest processing time order (WSPT, non-increasing
w2

j/pj), with ties broken by earliest due date (EDD, non-decreasing dj).

Lemma 2 For any fixed leader’s choice, i.e., assignment of the variables xj,
there exists an optimal follower’s response according to the optimistic bilevel
assumption such the tasks that start after rmax = max{j|xj=1} rj are ordered by
the above defined task index.

Proof: The proof essentially matches the proofs of the optimality of the WSPT
order for the 1||

∑
j wjCj problem and the EDD order for the feasibility prob-

lem subject to deadlines, but with uniform release times. Let j and k be two
subsequent tasks, both starting after rmax in any feasible bilevel solution, i.e.,
in a schedule that is both optimal for the follower and feasible for the leader.
Now, w2

j/pj ≥ w2
k/pk holds, because otherwise the schedule would be subopti-

mal for the follower: swapping j and k would decrease
∑

j w
2
jCj . Furthermore,

if w2
j/pj = w2

k/pk and dj > dk, then swapping j and k preserves the optimality
of the follower’s response and does not cause infeasibility for the leader. Re-
peating the swaps until no further such task pairs exists results in an optimal
feasible response according to the optimistic bilevel assumption. 2

15

PROCEDURE Propagate Dominance()

1 LET rmax := max{j|1∈Dom(xj)} rj

2 s := 0
3 FORALL j ∈ {1, ..., n} IN INCREASING ORDER

4 IF xj is bound to 1 AND Šj ≥ rmax

5 Update Š′j := max(Šj , s)
6 s := Š′j + pj

7 ELSE IF s > Ŝj

8 Update Ŝ′j := max(rmax − 1, rj)
9 e :=∞
10 FORALL j ∈ {1, ..., n} IN DECREASING ORDER

11 IF xj is bound to 1 AND Šj ≥ rmax

12 Update Ĉ′j := min(Ĉj , e)

13 e := Ĉ′j − pj

14 ELSE IF e < Čj

15 Update Ŝ′j := max(rmax − 1, rj)

Figure 4: Algorithm for propagating the dominance rule.

In theory, it would be possible to encode the above dominance rule directly
into 1

2n(n − 1) reified constraints, i.e., one constraint for each pair of tasks.
However, to achieve more efficient propagation, we implemented a new algorithm
for propagating the above dominance rule as a single global constraint. The
algorithm, displayed in Figure 4, tightens the bounds of the domains of start and
end time variables. Recall that the minimum and maximum start (end) times
are denoted by Šj and Ŝj (Čj and Ĉj), respectively. Tightening the bounds of
a start time variable Sj means updating its initial domain of [Šj , Ŝj] to [Š′j , Ŝ

′
j],

where Š′j ≥ Šj and Ŝ′j ≤ Ŝj hold. The constraint requires an initialization step,
which sorts the tasks according to the above defined order in O(n log n) time.
Then, each propagation run takes O(n) time. The algorithm first computes
an upper bound of rmax (line 1). Then, it considers the tasks j in the above
order, and maintains an earliest start time s of the task under consideration
(lines 3-8). If j must be scheduled after rmax, then it must start after s (lines
4-6). Otherwise, if j cannot start after s, then it cannot be scheduled after rmax

(lines 7-8). In the latter case, one of the following conditions hold: either j is
not scheduled, in which case Ŝ′j can be set to rj ; or j starts strictly before rmax.
Overall, Ŝ′j can be set to max(rmax − 1, rj). Finally, the algorithm repeats the
same type of inference for the latest finish times, considering the tasks in the
reverse order (lines 10-15).

16

5.3 Bounds on the follower’s cost

5.3.1 The upper bound

Our follower’s subproblem is 1|rj |
∑
w2

jCj . Let g(T1) denote the follower’s min-
imal cost when the leader accepts the task set T1. It is obvious that if T1 ⊆ T2

then g(T1) ≤ g(T2). Therefore, the cost of any heuristic solution to the fol-
lower’s problem with task set Tmax = {j | 1 ∈ Dom(xj)} can be used as ĝFmax.
In our solver, we have implemented the constructive heuristic called CPRTWT
with the makeBetter improvement step after the insertion of each task to the
schedule, originally introduced in [21].

5.3.2 The lower bound

Computing ǧLmin requires obtaining a lower bound on a
∑
w2

jCj problem sub-
ject to release times, deadlines, and optional activities. Our lower bound (LB)
is based on the model of [30] for a similar problem, though, without optional
activities:

min
zj ,Cj

∑
j

w2
jCj (7)

subject to
∀j (r′j + pj)zj ≤ Cj (8)
∀j Cj ≤ d′jzj (9)

∀i, j (i 6= j) (Ci ≤ Cj − pjzj) ∨ (Cj ≤ Ci − pizi) (10)∑
j

w1
j zj ≥W (11)

∀j zj ∈ Dom(xj) (12)

In this formulation, variables zj indicate if task j is processed (zj = 1) or
not (zj = 0). Variables Cj denote the completion times. Constraints (8) and
(9) specify the release times and deadlines of the task, and also ensure that
Cj is 0 if j is not scheduled. Note that the time windows taken from the CP
model can be used, since these are strengthened by propagation compared to
the original values. Line (10) defines the unary resource constraint. Constraint
(11) states that the total weight of the tasks selected for processing must be at
least W =

∑
j w

1
j − UB + 1 in order to achieve an improving solution for the

leader. In a given search node, it can already be known for some tasks if they
are already selected for processing by the leader or not, while it is still an open
question for the rest (12). Note that Dom(xj) ⊆ {0, 1}. Now, by dualizing (8)
and (9) with multipliers a and b, we receive the following Lagrangian relaxation
(LR):

17

min
zj ,Cj

∑
j

w2
jCj +

∑
j

[aj((r′j + pj)zj − Cj) + bj(Cj − d′jzj)]

=
∑

j

(w2
j − aj + bj)Cj +

∑
j

[aj(r′j + pj)− bjd′j]zj (13)

subject to
∀i, j (i 6= j) (Ci ≤ Cj − pjzj) ∨ (Cj ≤ Ci − pizi) (14)∑

j

w1
j zj ≥W (15)

∀j zj ∈ Dom(xj) (16)

Next, we present how the LR problem can be solved to optimality for fixed
non-negative Lagrangian multipliers a and b. We exploit that the first com-
ponent of the objective function corresponds to

∑
{j | zj=1} w

′
jCj with w′j =

w2
j − aj + bj , while the second component does not contain completion time

variables Cj . Therefore, for any fixed z, the optimal solution is a no-delay
schedule containing the selected tasks in WSPT order.

Computing the LB in leaves of the search tree We have developed two
different methods for computing the optimal solution of LR: one to be used in
the leaves of the search tree, and another for internal search nodes. In leaves
we exploit that there are no optional tasks, i.e., the variables zj are fixed. In
this case, ǧLmin equals the objective value of the WSPT schedule, which can be
computed in O(n log n) time.

Computing the LB in internal search nodes In internal search nodes,
the LR problem with a fixed choice of multipliers a and b can be solved by the
following dynamic program (DP). As an initialization step, we sort the tasks j
that may be scheduled (1 ∈ Dom(xj)) by non-increasing w′j/pj , which corre-
sponds to the WSPT order according to the modified weights w′j . Tasks that
cannot be scheduled (1 6∈ Dom(xj)) are completely ignored by the algorithm.

The DP fills in a 3 dimensional table whose cells are indexed by parameters
k, v, and t. The content of each cell characterizes the optimal solution of a
subproblem of LR, received by applying the following restrictions to LR:

• The task selected for processing are a subset of {1, ..., k};

• The total leader’s weight of the selected task must be equal to v;

• The schedule must end at time t.

The optimal schedule in cell (k, v, t) will be denoted by σ(k, v, t), and its cost
by u(k, v, t). It is sufficient to store the cost u(k, v, t) in the table, while we use
σ(k, v, t) only to show the correctness of the algorithm below. For combinations

18

of parameters k, v, and t that do not lead to a feasible schedule, we consider
u(k, v, t) =∞.

The DP fills in the table layer-by-layer, using induction over the different
values of k. The first layer (k = 1) contains two finite values only, which
characterize the two trivial solutions: u(1, w1

1, p1) = w2
1p1 for a schedule that

contains task 1 only, and u(1, 0, 0) = 0 for the empty schedule.
Each of the values u(k, v, t) in the subsequent layers, k ≥ 2, can be derived

in one of the following two ways. If task k is contained in schedule σ(k, v, t),
then k is the last task in this schedule due to the optimality of the WSPT
order. Consequently, σ(k, v, t) is the concatenation of the optimal schedule
for the subproblem without task k, σ(k − 1, v − w1

k, t − pk), and task k itself.
Alternatively, if task k is not contained in σ(k, v, t), then σ(k, v, t) is identical
to the schedule computed in the previous layer, σ(k − 1, v, t). From these two
candidate schedules, the one that leads to the lowest cost is selected. Hence,
the value of u(k, v, t) can be computed as:

u(k, v, t) = min(u(k − 1, v − w1
k, t− pk) + tw2

k, u(k − 1, v, t))

Note that a cell corresponds to a feasible solution of LR if and only if it has
v ≥W , i.e., it satisfies constraint (15). All other constraints of LR are respected
by all cells by definition. Hence, the optimal solution of LR can be retrieved
from the last layer of the table, denoted as layer kmax, as follows:

ǧLmin = min
v,t
{u(kmax, v, t)|v ≥W}

The DP runs in pseudo-polynomial time and space: its complexity isO(nV P),
where V =

∑
j w

1
j and P =

∑
j pj .

Setting the Lagrangian multipliers The above methods result in an op-
timal solution of LR for any fixed non-negative multipliers a and b, assuming
w′j = w2

j − aj + bj ≥ 0. To find the multipliers that provide the strongest LB,
we embedded the above methods into a loop, and adjusted the multipliers after
each cycle as follows. If task j violates its release time in the current optimal
solution of LR, then its weight is decreased in order to move it later in the
WSPT order. Namely, we set w′j = w′

kpj

pk
− ε, where k is the successor task of j

in the schedule. Similarly, if j violates its deadline, then its weight is increased
to w′j = w′

kpj

pk
+ ε, where k is the predecessor of j. If task j respects both its

release time and deadline then its weight is not changed. Note that tasks can-
not violate their release time and deadline at the same time. The method was
initialized with aj = bj = 0.

The best run times were achieved with the number of cycles set to 15 in
leaves, and not using this method in internal search nodes (c.f. the experimental
results for further details).

19

5.4 Lower bounds

The single level relaxation (SLR) of our problem is the 1|rj |
∑
w1

jUj scheduling
problem, where the optimization criterion

∑
w1

jUj stands for the weighted num-
ber of late tasks. This problem is NP-complete. Nevertheless, various solution
techniques and polynomial lower bounds are available from the literature. The
current best algorithm for the SLR is the branch-and-bound of [28]. We have
implemented the mixed-integer programming (MIP) formulation of the single
level problem proposed in this paper, and solved its linear relaxation in each
node of the search tree. The parameters rj and dj were updated in each node
by the tighter time windows taken from the CP model.

The gap between the lower bound and the bilevel solution originates from
two sources: solving the SLR instead of the bilevel problem, and the further
linear relaxation of the SLR. In preliminary experiment we have found that
over 75% of the gap is due to taking the SLR, and only 25% originates from
solving the linear relaxation. Overall, this lower bound was not sufficiently tight
to be used for pruning the search tree efficiently.

5.5 An enhanced propagator for COpt

A basic propagator for the follower’s optimality constraint COpt can be built
based on the generic scheme presented in Section 4.1. Below we present an
enhanced algorithm that fully exploits the follower’s lower and upper bounds
during the exact solution of the follower’s subproblem. This algorithm can be
applied in bilevel problems where the leader’s objective, f , does not depend on
the follower’s response.

The pseudo-code of the algorithm is shown in Figure 5. In lines (3-5), the al-
gorithm checks if the computed bounds on the follower’s cost allow the existence
of a solution. Afterwards, it solves the follower’s subproblem with the leader’s
deadline constraints, resulting in solution Y + and cost g+ (line 6). Then, the
follower’s subproblem is solved without the leader’s deadline constraints, leading
to cost g∗ (line 10). Search can be aborted when a solution with g∗ < g+ is
reached, because this solution, as well as any potential improving solution, will
lead to failure in lines (11-12) anyway. The solution Y + is optimal for the leader
if and only if g+ = g∗ (note that g+ ≥ g∗ always holds). Observe that the order
of lines (6) and (10) is reversed w.r.t. the basic version of the propagator, which
is advantageous because the problem faced in line (6) is tighter and generally
easier-to-solve than the problem of line (10). This latter step exploits that f
does not depend on the follower’s response.

6 Computational experiments

6.1 Experimentation of the proposed solution techniques

In this section we report computational results achieved on the sample schedul-
ing problem. The solver was implemented in such a way that each inference

20

PROCEDURE Propagate C Opt2()

1 IF X is not bound

2 RETURN

3 Compute ĝFmax and ǧLmin

4 IF ĝFmax < ǧLmin

5 Fail

6 LET Y + := arg minY ′{g(X, Y ′) | C(X, Y ′) ∧D(X, Y ′) ∧ g(X, Y ′) <= ĝFmax}
7 IF Y + = ’no solution’
8 Fail

9 LET g+ := g(X, Y +)
10 LET g∗ := minY ′{g(X, Y ′) | D(X, Y ′) ∧ g(X, Y ′) <= ĝFmax}
11 IF g+ > g∗

12 Fail

13 Instantiate Y ← Y +

Figure 5: Enhanced algorithm for propagating constraint COpt.

technique presented in a separate section above could be switched on or off in-
dividually. Moreover, the bounds on the follower’s cost (see Section 5.3) could
be computed independently in the internal search nodes of the master problem
using the DP, or in the leaves using the WSPT schedule. Preliminary experi-
ments showed that all the presented techniques contribute to pruning the search
tree, but it does not pay off in terms of search time to use the leader’s lower
bound or to compare the follower’s bounds in internal search nodes. Therefore
we decided to switch off these two components in the main experiments, even in
solver version V1 that we will consider the complete solver in the sequel. Fur-
ther versions, V2 and V3, were created by gradually switching of the introduced
inference techniques. The last version, V4, used only the basic constraint model
of Section 5.1 without any enhancements. The techniques used in the different
versions are summarized in Table 1.

V1 V2 V3 V4
Basic constraint model (Section 5.1) + + + +
Enhanced propagator for COpt (Section 5.5) + + +
Follower’s dominance rules in master problem (Section 5.2) + +
Bounds on the follower’s cost, leaves only (Section 5.3) +

Table 1: Comparison of the tested versions of the solver.

The solver was implemented in C++ using ILOG Solver and Scheduler, both
for the bilevel master problem and the follower’s subproblem solver. ILOG Cplex
was used for the computation of the LP lower bound. The experiments were
run on a 1.86 GHz Intel Xeon computer with 2 GB of RAM under Windows
Server 2003. The time limit was set to 600 seconds per problem instance.

21

Problem instances have been generated similarly to the instances for the
single level problem of minimizing the weighted number of late jobs in [11] and
[28], with the only difference that we have also added the follower’s weights
w2

j . The parameters of the generator are the number of tasks n, the range of
release times, kR (a larger value means a greater variance of the release times),
and the tightness of the deadlines, kD (the larger the value, the wider the time
windows). Parameter n varied between 20 and 50 with increments of 5, while kR

and kD were chosen from the set {1, 5, 10, 20}. Generating 10 instances with all
possible combinations of the 3 parameters resulted in 1120 instances altogether.
Processing times were generated using U [1, 100], release times from U [0, kRn],
deadlines from U [rj +pj , rj +pj +kDn], while weights w1

j and w2
j from U [1, 10],

where U [a, b] denotes the discrete uniform distribution over integers from the
interval [a, b].

The comparison of the results achieved with the four solver versions is dis-
played in Table 2, while Table 3 provides further statistics about runs of the
propagator of COpt in the complete version, V1. In both tables, each row con-
tains combined result for the instances with a given value of N and kD. Column
Opt displays the number of instances that could be solved to proven optimal-
ity out of 40, while column Best shows the number of instances on which the
solver found the best solution known for the instance. Time contains the aver-
age computation time in seconds or 600 for instances where the time limit was
hit. Column Nodes shows the average number of search nodes. The additional
columns in Table 3 contain the number of times the propagator of COpt reached
the different steps of computation, as well as the total time of these computation
steps: calculating the follower’s bounds (Step (1)), the follower’s minimum cost
when the leader’s constraints are respected (Step (2)), and the minimum cost
when the leader’s constraints are ignored (Step (3)). These steps corresponds
to lines 3-5, 6-9, and 10-12 of the pseudo-code in Figure 5.

The results show that the stronger versions of the solver were able to solve
instances with up to 20-25 tasks to optimality, whereas the naive version, V4,
started to have difficulties even with some 20-task instances. On the whole,
the complete version, V1, solved 6.6%, 9.9%, and 32.3% more instances to opti-
mality than versions V2, V3, V4, respectively. The difference becomes slightly
more significant as the problem size increases, and the comparison of average
computation times brings roughly the same result. The two versions V1 and
V2 (and the other two versions V3 and V4 likewise) generate the same number
of search nodes for all instances that they could solve on time. This happened
because the two versions differ only in the way of processing the leaves. For
some larger problems it happened that the solvers did not find any solutions
at all. This was the case, e.g., for parameters N = 50 and kD = 20, where no
feasible solution has been found by any solver version. Except for these cases,
V1 always found the best solution among the four solver versions.

Smaller values of kD made the problems easier to solve for all versions, be-
cause then the leader had a smaller choice of task sets to accept, and those sets
are identified relatively efficiently without the follower’s optimality condition,
too. This is made apparent especially by the low number of calls to the prop-

22

agator of COpt with kD = 1 (column Step (1) in Table 3). The results also
depend on kR (small kR makes them easier to solve), but much less than on kD

or N .
The analysis of the runs of the enhanced propagator in Table 3 shows that

follower’s bounds computation inferred the infeasibility of the leaf in 67% of the
cases. The exact CP solver had to be called with the leader’s constraints in
the remaining 33% of the runs (Step (2)), and without the leader’s constraint
in only 0.5% of the runs (Step (3)). On the one hand, this low percentage
is an excellent result, since the last step of the algorithm is the most time
consuming. On the other hand, it also shows that at least 99.5% of the leaves
did not contain a solution that is both feasible for the leader and optimal for the
follower. Hence, future research should address the efficient propagation of the
follower’s optimality constraint COpt also in the internal search nodes. Overall,
89% of the total computation time was spent in the propagator of COpt in the
leaves (23%, 62%, and 4% in steps (1), (2), and (3), respectively).

6.2 Results with translation to QCSP

To verify our contributions, we have implemented our scheduling problem in
QeCode 2.0 using two different encodings to QCOP+. Our first QCOP+ model
is based on the rewriting presented in Section 3.4, with one pair of existential
and universal quantifiers. This model proved to be rather inefficient and mem-
ory consuming, since all possible decisions of the follower had to be enumerated
explicitly in the computed strategy as possible values for the universally quan-
tified variables. For this reason, instances with at most 4 tasks were trackable
only, which is nearly an order of magnitude smaller than the instances we were
interested in.

We have also implemented an alternative QCOP+ model with two existential
quantifiers, and two different optimization criteria in the different quantifier
scopes. The outer scope corresponds to the leader’s choice, while the inner
scope encodes the follower’s subproblem. Note however that modeling tricks
were required to overcome two shortcomings of the QCOP+ formalism. First,
since QeCode does not allow to state a constraint set C different from D, we
had to embed a measure of violations of C into f . Furthermore, to ensure that
a solution according to the optimistic assumption is computed, we added ε · f
as tiebreaker to g. Using this model, we were able to solve instances with at
most 5 tasks of our scheduling problem.

The above results show that even the naive version, V4, of our bilevel solver
outperforms the approach of translation to QCOP+. This occurs because the
techniques proposed in this paper exploit the bilevel problem structure, which
is typically not present in general QCSP problems. Hence, these results provide
justification for research on specialized solution techniques for discrete bilevel
problems.

23

7 Conclusions

This paper introduced novel CP-based modeling and solution techniques for dis-
crete bilevel optimization problems. Since bilevel problems are computationally
difficult–they are often outside NP–, techniques that improve the efficiency of
the solver are of key importance. Hence, we have presented how classical tech-
niques of operations research, such as dominance rules or lower bounds, can be
applied to bilevel problems. New algorithms for propagating the follower’s op-
timality constraint and computing bounds on the follower’s cost were proposed.
These techniques were illustrated on a bilevel scheduling problem and evaluated
in computational experiments.

We think that an interesting direction for future research is the development
of new inference techniques for discrete bilevel problems. Depending on the
specific problem, these can include the filtering of the leader’s variable domains
based on inference from the follower’s optimality condition, or the re-use of the
follower’s response computed in earlier visited leaves.

Acknowledgements

We thank the authors of QeCode for making their software freely available and
for the discussions on QCSP. The work reported here has been supported by
OTKA grant K76810 and NKTH grant OMFB-01638/2009. A. Kovács acknowl-
edges the support of the János Bolyai scholarship No. BO/00138/07.

References

[1] Gecode: Generic constraint development environment, version 3.1, 2009.
http://www.gecode.org/.

[2] QeCode: An open QCSP solver, version 2.0, 2009.
www.univ-orleans.fr/lifo/members/vautard/qecode.

[3] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling.
Kluwer Academic Publishers, 2001.

[4] J. F. Bard. Coordination of a multidivisional organization through two
levels of management. Omega, 11:457–468, 1983.

[5] M. Benedetti, A. Lallouet, and J. Vautard. QCSP made practical by virtue
of restricted quantification. In International Joint Conference on Artificial
Intelligence, pages 38–43, 2007.

[6] M. Benedetti, A. Lallouet, and J. Vautard. Modeling adversary scheduling
with QCSP+. In Proc. of the 2008 ACM symposium on Applied computing,
pages 151–155, 2008.

24

[7] M. Benedetti, A. Lallouet, and J. Vautard. Quantified constraint opti-
mization. In CP2008, Principles and Practice of Constraint Programming
(Springer LNCS 5202), pages 463–477, 2008.

[8] G. G. Brown, W. M. Carlyle, J. Royset, and R. K. Wood. On the Com-
plexity of Delaying an Adversary’s Project, volume 29 of Operations Re-
search/Computer Science Interfaces, chapter 1. Springer, 2005.

[9] K. N. Brown, J. Little, P. J. Creed, and E. C. Freuder. Adversarial con-
straint satisfaction by game-tree search. In Proc. of ECAI 2004, pages
151–155, 2004.

[10] P.A. Clark and A. Westerberg. Bilevel programming for steady-state chem-
ical process design. I: Fundamentals and algorithms. Computers and Chem-
ical Engineering, 14(1):87–97, 1990.

[11] S. Dauzère-Pérès and M. Sevaux. Using Lagrangean relaxation to minimize
the weighted number of late jobs on a single machine. Naval Research
Logistics, 50(3):273–288, 2003.

[12] S. Dempe. Discrete bilevel optimization problems. Technical report, Uni-
versität Leipzig, 2001.

[13] S. Dempe. Foundations of Bilevel Programming. Kluwer, 2002.

[14] D. Fanghänel and S. Dempe. Bilevel programming with discrete lower level
problems. Optimization: A Journal of Mathematical Programming and
Operations Research, 58(8):1029–1047, 2009.

[15] M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to
the Theory of NP-completeness. Freeman, 1979.

[16] I. Gent, P. Nightingale, and K. Stergiou. QCSP-Solve: A solver for quanti-
fied constraint satisfaction problems. In Proceedings of IJCAI-2005, pages
138–143, 2005.

[17] I. P. Gent, P. Nightingale, A. Rowley, and K. Stergiou. Solving quantified
constraint satisfaction problems. Artificial Intelligence, 172:738–771, 2008.

[18] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Operations Research, 5:287–326, 1979.

[19] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Math-
ematical Programming, 96:33–60, 2003.

[20] A. Jouglet, P. Baptiste, and J. Carlier. Branch-and-bound algorithms for
total weighted tardiness. In Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, chapter 13. Chapman & Hall / CRC, 2004.

25

[21] A. Jouglet, D. Savourey, J. Carlier, and P. Baptiste. Dominance-based
heuristics for one-machine total cost scheduling problems. European Jour-
nal of Operational Research, 184:879–899, 2008.

[22] J. K. Karlof and W. Wang. Bilevel programming applied to the flow shop
scheduling problem. Computers and Operations Research, 23(5):443–451,
1996.

[23] T. Kis and A. Kovács. On bilevel machine scheduling problems. Submitted
to OR Spektrum, 2009.

[24] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its
application to optimal highway pricing. Management Science, 44(12):1608–
1622, 1998.

[25] J. K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[26] Z. Lukač, K. Šorić, and V. Vojvodić Rosenzweig. Production planning
problem with sequence dependent setups as a bilevel programming problem.
European Journal of Operational Research, 187:1504–1512, 2008.

[27] P. Marcotte, A. Mercier, G. Savard, and V. Verter. Toll policies for mitigat-
ing hazardous materials transport risk. Transportation Science, 43(2):228–
243, 2009.

[28] R. M’Hallah and R.L. Bulfin. Minimizing the weighted number of tardy jobs
on a single machine with release dates. European Journal of Operational
Research, 176:727–744, 2007.

[29] P. Nightingale. Non-binary quantified CSP: Algorithms and modelling.
Constraints, 14(4):539–581, 2009.

[30] Y. Pan and L. Shi. Dual constrained single machine sequencing to minimize
total weighted completion time. IEEE Transactions on Automation Science
and Engineering, 2(4):344–357, 2005.

[31] A. Prékopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

[32] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[33] H. D. Sherali, A. L. Soyster, and F. H. Murphy. Stackelberg-nash-cournot
equilibria: Characterizations and computations. Operations Research,
31:253–276, 1983.

[34] H. Stackelberg. Marktform and Gleichgewicht. Julius Springer, Vienna,
1934.

26

[35] A. Tsoukalas, W. Wiesemann, and B. Rustem. Global optimisation of
pessimistic bi-level problems. In P. M. Pardalos and T. F. Coleman, editors,
Lectures on Global Optimization, pages 215–243. American Mathematical
Society, 2009.

[36] G. Verger and C. Bessière. Blocksolve: a bottom-up approach for solv-
ing quantified CSPs. In CP2006, Principles and Practice of Constraint
Programming (Springer LNCS 4204), pages 635–649, 2006.

[37] B. von Stengel. Equilibrium computation for two-player games in strate-
gic and extensive form. In N. Nisan, T. Roughgarden, É. Tardos, and
V.V. Vazirani, editors, Algorithmic Game Theory, chapter 3. Cambridge
University Press, 2007.

27

V
1

V
2

V
3

V
4

N
k

D
O

p
t

B
es

t
N

o
d
es

T
im

e
O

p
t

B
es

t
N

o
d
es

T
im

e
O

p
t

B
es

t
N

o
d
es

T
im

e
O

p
t

B
es

t
N

o
d
es

T
im

e
2
0

1
4
0

4
0

4
3

0
.0

2
4
0

4
0

4
3

0
.0

2
4
0

4
0

4
3

0
.0

2
4
0

4
0

4
3

0
.0

2
5

4
0

4
0

2
4
0

0
.0

5
4
0

4
0

2
4
0

0
.1

4
4
0

4
0

3
0
9

0
.1

8
4
0

4
0

3
0
9

0
.2

9
1
0

4
0

4
0

5
0
3

0
.1

6
4
0

4
0

5
0
3

0
.4

3
4
0

4
0

6
8
8

0
.5

2
4
0

4
0

6
8
8

4
.0

2
2
0

4
0

4
0

4
3
8
5

6
.5

3
4
0

4
0

4
3
8
5

2
0
.0

6
4
0

4
0

1
1
5
4
2

2
4
.5

1
2
6

2
9

7
6
8
1

2
7
0
.5

3
2
5

1
4
0

4
0

9
7

0
.0

2
4
0

4
0

9
7

0
.0

3
4
0

4
0

9
7

0
.0

3
4
0

4
0

9
7

0
.0

3
5

4
0

4
0

1
6
7
0

0
.4

3
4
0

4
0

1
6
7
0

2
.3

8
4
0

4
0

1
9
4
2

2
.5

6
4
0

4
0

1
9
4
2

5
.1

6
1
0

4
0

4
0

6
9
7
4

4
.9

8
4
0

4
0

6
9
7
4

2
0
.2

4
4
0

4
0

1
0
5
6
8

2
4
.2

6
3
5

3
8

8
6
0
7

1
4
2
.9

8
2
0

2
9

3
7

3
5
5
0
7

2
3
0
.7

2
2
1

2
4

1
8
1
5
1

3
0
7
.4

2
2
1

2
4

7
1
1
2
7

3
3
0
.8

7
6

9
1
3
1
3
2

5
4
6
.8

5
3
0

1
4
0

4
0

2
8
4

0
.0

5
4
0

4
0

2
8
4

0
.1

0
4
0

4
0

2
8
5

0
.1

0
4
0

4
0

2
8
5

0
.1

1
5

3
8

3
9

3
0
6
9
0

3
3
.1

0
3
8

3
8

1
1
6
2
4

4
1
.4

5
3
8

3
8

1
3
3
2
8

4
2
.2

3
3
7

3
7

7
2
7
6

7
0
.5

6
1
0

3
7

4
0

4
4
3
1
6

8
3
.9

0
3
1

3
3

3
8
4
7
6

1
7
7
.0

1
3
0

3
3

8
5
0
0
7

2
0
3
.1

1
1
1

1
5

2
5
9
0
8

5
0
2
.5

3
2
0

1
3

2
4

1
3
3
9
4
6

4
4
2
.3

2
1
2

1
8

6
5
9
8
9

4
5
3
.5

2
9

1
2

2
2
8
7
1
2

5
2
1
.8

0
0

3
1
1
7
0
1

6
0
0
.0

0
3
5

1
4
0

4
0

7
0
1

0
.1

2
4
0

4
0

7
0
1

0
.2

4
4
0

4
0

7
0
6

0
.2

4
4
0

4
0

7
0
6

0
.2

7
5

3
8

3
8

5
8
2
9
8

4
3
.3

4
3
8

3
8

3
8
7
6
2

7
2
.3

9
3
6

3
6

5
6
0
8
2

9
5
.3

0
2
8

3
0

2
1
4
7
2

2
5
5
.5

2
1
0

2
6

3
5

2
2
9
9
6
3

3
1
2
.5

9
1
6

1
8

1
1
9
4
9
2

3
9
6
.1

3
1
5

1
7

2
5
1
1
3
4

4
1
9
.9

0
3

5
2
1
5
7
0

5
7
5
.9

7
2
0

5
8

1
7
8
1
5
5

5
6
1
.7

3
2

4
7
0
3
5
3

5
8
1
.7

9
1

3
2
0
0
3
6
4

5
9
3
.9

0
0

0
1
6
1
2

6
0
0
.0

0
4
0

1
3
9

3
9

1
1
5
7
1

1
5
.2

1
3
9

3
9

3
7
9
2

1
5
.2

9
3
9

3
9

3
8
1
4

1
5
.2

8
3
9

3
9

3
4
3
6

1
5
.3

1
5

3
4

3
6

2
7
6
0
3
6

1
5
4
.5

1
3
0

3
1

1
5
6
6
8
7

2
4
6
.9

8
2
8

3
0

2
2
2
0
3
6

2
8
6
.2

0
1
5

1
6

5
7
8
5
4

4
6
7
.8

6
1
0

1
2

2
2

4
3
3
9
4
9

5
1
2
.4

1
1
0

1
5

3
1
6
5
1
7

5
3
5
.6

0
2

1
2

4
0
3
7
4
9

5
9
8
.3

2
0

1
8
1
6
8

6
0
0
.0

0
2
0

0
3

1
5
2
9
1
2

6
0
0
.0

0
0

1
5
2
7
0
6

6
0
0
.0

0
0

0
2
0
7
7
8
6

6
0
0
.0

0
0

0
3
1
0

6
0
0
.0

0
4
5

1
3
9

3
9

1
3
6
1
8

1
6
.2

2
3
9

3
9

6
7
9
9

1
8
.5

9
3
9

3
9

6
6
3
7

1
8
.6

5
3
9

3
9

6
3
7
1

1
9
.3

4
5

2
1

3
2

5
0
0
9
6
7

3
5
7
.0

7
1
6

2
1

2
3
2
0
0
3

3
9
5
.0

1
1
4

1
9

2
7
0
8
9
6

4
1
9
.3

6
4

6
2
2
8
9
9

5
5
5
.9

0
1
0

2
1
5

4
4
5
2
6
7

5
8
6
.2

9
0

9
2
3
8
4
6
5

6
0
0
.0

0
0

4
2
6
0
5
4
3

6
0
0
.0

0
0

0
4
5
6
6

6
0
0
.0

0
2
0

0
2

1
2
7
0
7
2

6
0
0
.0

0
0

2
3
5
4
9
5

6
0
0
.0

0
0

1
1
6
0
5
3
3

6
0
0
.0

0
0

0
4
9
7

6
0
0
.0

0
5
0

1
3
9

3
9

2
6
0
5
4

1
9
.2

4
3
9

3
9

2
2
0
3
0

2
7
.3

6
3
9

3
9

2
2
2
8
3

2
8
.0

1
3
9

3
9

2
1
9
3
4

3
2
.4

7
5

1
3

2
7

6
8
3
9
9
3

4
8
4
.1

3
8

1
5

3
7
3
0
7
0

5
1
8
.5

8
7

1
3

4
1
2
2
5
8

5
4
9
.6

7
1

2
1
8
8
4
8

5
8
6
.4

0
1
0

0
7

2
3
9
0
2
0

6
0
0
.0

0
0

3
1
0
8
7
1
0

6
0
0
.0

0
0

1
2
3
1
0
1
1

6
0
0
.0

0
0

0
1
3
4
8

6
0
0
.0

0
2
0

0
0

5
8
8
4
3

6
0
0
.0

0
0

0
1
9
4
2
8

6
0
0
.0

0
0

0
1
5
6
3
0
8

6
0
0
.0

0
0

0
1
0
8

6
0
0
.0

0
∑

7
4
5

8
4
2

6
9
9

7
4
7

6
7
8

7
2
0

5
6
3

5
8
8

T
ab

le
2:

C
om

pa
ri

so
n

of
fo

ur
di

ffe
re

nt
ve

rs
io

ns
of

th
e

so
lv

er
.

28

N kD Opt Best Nodes Time Step (1) Step (2) Step (3)
Runs Time Runs Time Runs Time

20 1 40 40 43 0.02 6 0.00 3 0.00 3 0.00
5 40 40 240 0.05 51 0.00 14 0.00 4 0.00

10 40 40 503 0.16 104 0.00 38 0.00 4 0.00
20 40 40 4385 6.53 2687 1.10 1291 3.93 9 0.23

25 1 40 40 97 0.02 6 0.00 3 0.00 3 0.00
5 40 40 1670 0.43 868 0.20 37 0.00 4 0.00

10 40 40 6974 4.98 2914 2.15 1074 1.03 10 0.35
20 29 37 35507 230.72 19492 20.13 13263 205.25 19 2.33

30 1 40 40 284 0.05 20 0.00 6 0.00 4 0.00
5 38 39 30690 33.10 24704 24.03 8891 5.38 163 0.53

10 37 40 44316 83.90 11786 15.35 6130 57.75 25 2.88
20 13 24 133946 442.32 75825 62.48 21176 350.13 13 11.35

35 1 40 40 701 0.12 35 0.00 19 0.00 5 0.00
5 38 38 58298 43.34 28561 27.18 9223 6.90 75 0.50

10 26 35 229963 312.59 63536 75.03 31118 172.68 400 27.60
20 5 8 178155 561.73 102183 111.03 16730 411.23 6 12.95

40 1 39 39 11571 15.21 9525 10.63 4860 3.70 5 0.00
5 34 36 276036 154.51 36983 54.15 16676 31.55 692 25.30

10 12 22 433949 512.41 82944 134.20 38362 264.23 541 28.60
20 0 3 152912 600.00 88775 106.93 11535 468.90 5 0.00

45 1 39 39 13618 16.22 8641 11.48 3391 3.03 17 0.05
5 21 32 500967 357.07 69785 128.40 38407 93.08 1338 40.50

10 2 15 445267 586.29 104149 136.25 38077 335.18 121 20.63
20 0 2 127072 600.00 66531 137.60 4918 436.50 0 0.00

50 1 39 39 26054 19.24 7199 11.95 2245 2.75 170 0.83
5 13 27 683993 484.13 80435 150.78 34328 141.30 723 36.55

10 0 7 239020 600.00 76213 121.50 27487 399.50 56 20.63
20 0 0 58843 600.00 34352 101.43 3939 482.95 0 0.00

Avg. 35654 51.57 11901 138.46 158 8.28

Table 3: Detailed results achieved with the complete version, V1, of the solver.

29

