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Abstract. We introduce a novel global constraint for the total weighted
completion time of activities on a single unary capacity resource. For
propagating the constraint, an O(n4) algorithm is proposed, which makes
use of the preemptive mean busy time relaxation of the scheduling prob-
lem. The solution to this problem is used to test if an activity can start at
each start time in its domain in solutions that respect the upper bound on
the cost of the schedule. Empirical results show that the proposed global
constraint significantly improves the performance of constraint-based ap-
proaches to single-machine scheduling for minimizing the total weighted
completion time. Since our eventual goal is to use the global constraint
as part of a larger optimization problem, we view this performance as
very promising. We also sketch the application of the global constraint
to cumulative resources and to problems with multiple machines.

1 Introduction

Many successful applications of constraint programming (CP) to optimization
problems exhibit a “maximum type” optimization criteria, characterized by min-
imizing the maximum value of a set of variables (e.g., makespan, maximum tar-
diness, or peak resource usage in scheduling). Such criteria exhibit strong back
propagation: placing an upper bound on the cost variable results in the pruning
of the domain (i.e., the reduction of the maximum value) of the constituent vari-
ables. CP has not been as successful for other practically important optimization
criteria such as “sum type” objective functions characterized by the minimiza-
tion of the sum of a set of variables. Examples in the scheduling domain include
total weighted completion time, weighted tardiness, weighted earliness and tardi-
ness, and the number of late jobs. Nearly all CP-based approaches to scheduling
with these criteria use only the basic sum constraint to propagate the objective
function. However, back propagation of the sum constraint is weak because it is
often the case that the maximum value of each decision variable is supported by
the minimum values of all the other decision variables. The significance of more
efficient global constraints for back propagation has been emphasized by Focacci
et al. in [10, 11].



Our purpose is to develop algorithms for propagating “sum type” objec-
tive functions in constraint-based scheduling. In this paper, we address the total
weighted completion time criterion on a single unary resource. The total weighted
completion time criterion has equivalents in a wide range of applications. In con-
tainer loading problems, it is a frequent requirement that the center of gravity of
the loaded container has to be situated as low as possible and, depending on the
means of transport, either above the axes of the vehicle or in the center of the
container. Along each axis of the coordinate system, the location of the center
of gravity of box-shaped goods corresponds to the average weighted completion
time of the activities in a schedule. The weight of the activities equals the physi-
cal weight of the goods, while their duration corresponds to the length, and their
resource requirement to the cross section of the loaded goods. In lot-sizing prob-
lems, different items are produced on a single machine, with specific deadlines.
The cost of a solution is composed of a holding cost and a setup or ordering
cost. The holding cost is computed as the total weighted difference of deadlines
and actual production times. Apart from a constant factor, this is equivalent
to the weighted distance of the activities from a remote point in time, which
corresponds to the weighted completion time in a reversed schedule. In all these
applications, the total weighted completion time constraint appears as only one
component of a complex satisfaction or optimization problem, in conjunction
with various other constraints. This justifies our ambition to develop a generic
constraint propagation algorithm, instead of customized search algorithms for
specific problems.

The remainder of this paper is organized as follows. In the next section, we
introduce the notation used in the paper. In Section 3 we review the related
literature. This is followed by the presentation of the proposed constraint prop-
agation algorithm (Section 4). In Section 5, we evaluate the performance of our
algorithm on a set of benchmark problems from the literature. In Section 6,
we sketch extensions of this work to cumulative resources and multiple resource
problems. Finally, conclusions are drawn and directions of future research are
outlined.

2 Definitions and Notations

While the proposed constraint has potential applications in various fields, we
present this work in the context of a single, unary capacity resource scheduling
problem where the optimization criterion is the minimization of total weighted
completion time.

This scheduling problem involves n activities, Ai, to be executed without
preemption on a single, unary resource. Each activity is characterized by its
processing time, pi, and a non-negative weight, wi. The start time variable of Ai

will be denoted by Si. When appropriate, we call the current lower bound on a
start time variable Si the release time of the activity, and denote it by ri. The
total weighted completion time of the activities will be denoted by C. We assume



that all data are integral. Thus, the constraint that enforces C =
∑

i wi(Si + pi)
on activities takes the following form.

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], C)

Throughout this paper we assume that pi and wi are constants. In applica-
tions where this assumption is restrictive, the lower bounds can be used during
the propagation. Our algorithm filters the domain of the Si variables, while it
tightens only the lower bound of C. The minimum and maximum values in the
current domain of a variable X will be denoted by X

¯
and X̄, respectively.

3 Related Literature

The complexity, approximability, and algorithmic aspects of total weighted com-
pletion time scheduling problems have been studied extensively. The most widely
discussed problem variants are the single and parallel machine versions with re-
lease dates. The classical scheduling notations for these problems are 1|ri|

∑
wiCi

and P |ri|
∑

wiCi, respectively. Both variants are known to be NP-hard in the
strong sense, even with uniform weights. Various polynomially solvable cases
have been identified: without release dates, ordering the activities according to
the Weighted Shortest Processing Time (WSPT) rule, i.e., by non-decreasing
pi/wi yields an optimal solution. The preemptive version of the single machine
problem with release dates and unit weights (1|ri, pmtn|

∑
Ci) is polynomially

solvable using Shortest Remaining Processing Time rule, but adding non-uniform
weights renders it NP-hard. A comprehensive overview of the complexity of re-
lated scheduling problems is presented in [7].

Linear programming (LP) and combinatorial lower bounds for the single ma-
chine problem have been studied and compared by Goemans et al. [12] and Dyer
& Wolsey [9]. The preemptive time-indexed relaxation corresponds to an assign-
ment problem in which variables indicate whether activity Ai is processed at
time t. In an alternative LP relaxation, the non-preemptive time-indexed formu-
lation, variables express if activity Ai is completed at time t. Dyer & Wolsey [9]
have shown that the latter is strictly stronger than the former. Since these LP
formulations only include continuous variables, but their size depends both on
the number of activities and the number of time units, they can be solved in
pseudo-polynomial time.

A different LP relaxation has been proposed by Schulz [18], using completion
time variables. Subsequently, Goemans et al. [12] proved that this relaxation is
equivalent to the preemptive time-indexed formulation, by showing that a pre-
emptive schedule that minimizes the mean busy time (see Section 4) yields the
optimal solution for both relaxations. Moreover, this preemptive schedule can be
found in O(n log n) time, where n is the number of activities. The authors also
propose two randomized algorithms (and their de-randomized counterparts) to
convert the preemptive schedule into a feasible solution of the original problem,
and prove that these algorithms lead to 1.69 and 1.75-approximations, respec-
tively. These results also imply a guarantee on the quality of the lower bound.



Polynomial time approximation schemes for the single and parallel machines
case, as well as for some other variants are presented in Afrati et al. [1]. The
time complexity of the algorithm to achieve a (1 + ε)-approximation for a fixed
ε is O(n log n), but the complexity increases super-exponentially with ε.

Papers presenting complete solution methods for different versions of the
total weighted completion time problem include a classical work of Belouadah
et al. [6] and more recent papers by Jouglet et al. [13] and Pan & Shi [17] for
a single machine, Nessah et al. [15] for identical machines, and Della Croce et
al. [8], as well as Akkan and Karabatı [2] for the two-machine flowshop problem.
Most of these algorithms make use of lower bounds similar to the ones discussed
above, as well as various dominance rules and customized branching strategies.

The literature of global constraint propagation algorithms for “sum type”
objective functions in scheduling is scarce. Notable exceptions are the works of
Focacci et al. [10, 11] on embedding relaxations of the Traveling Salesman Prob-
lem into global constraints. Baptiste et al. [4] proposed a branch-and-bound
method for minimizing the total tardiness on a single machine. While building
the schedule chronologically, the algorithm makes use of constraint propagation
to filter the set of possible next activities by examining how a given choice affects
the value of the lower bound. Baptiste et al. [5] address the minimization of the
number of late activities on a single resource, and generalize some well-known
resource constraint propagation techniques for the case where there are some
activities that complete after their due dates. The authors also propose prop-
agation rules to infer if activities are on time or late, but the applicability of
these inference techniques is restricted by the fact that they incorporate domi-
nance rules that might be invalid in more general contexts. For propagating the
weighted earliness/tardiness cost function in general resource constrained project
scheduling problems, Kéri & Kis [14] defined a simple method for tightening time
windows of activities by eliminating values that would lead to solutions with a
cost higher than the current upper bound.

4 Propagating Total Weighted Completion Time on a
Unary Resource

Our propagation algorithm relies on solving the preemptive mean busy time re-
laxation [12] of the scheduling problem. This relaxed problem minimizes

∑
i wiMi,

where Mi denotes the mean busy time of activity Ai, i.e., the average point in
time at which the machine is busy processing Ai. This is easily calculated by
finding the mean of each time point at which activity Ai is executed.

The underlying idea of our constraint propagator is to exploit the above
relaxation to obtain a lower bound on the solution value of the original problem.
However, instead of computing only one lower bound, we recompute the lower
bound for restricted versions of the problem in which the value of a start time
variable Si is bound to a given value t. We denote such restricted problems by
Π〈Si = t〉, and the resulting lower bound on C by C

¯
〈Si = t〉. Our domain

filtering mechanism will rely on the following proposition.



Proposition 1 If C̄ < C
¯
〈Si = t〉, then t can be removed from the domain of Si.

In what follows, we first present an algorithm to compute the optimal relaxed
schedule, and then show how this relaxed schedule can be quickly recomputed
for the restricted problems. These algorithms will be illustrated using the sample
problem introduced in Fig. 1.

ri pi wi wi/pi

A0 0 5 10 2
A1 4 2 10 5
A2 5 4 12 3
A3 13 2 8 4

A
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A
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A
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3

Fig. 1. Left: The input data for the sample problem. Right: The optimal solution of
the sample problem. The total weighted completion time is 372.

4.1 Computing a Lower Bound

The optimal solution of the preemptive mean busy time relaxation can be com-
puted in O(n log n) time [12]. The algorithm maintains a priority queue of the
activities sorted by non-increasing wi/pi. At each point of time, t, the queue
contains the activities Ai with ri ≤ t that have not yet been completely pro-
cessed. Scheduling decisions must be made each time a new activity is released
or an activity is completely processed. In either case, the queue is updated and a
fragment of the first activity in the queue, lasting until the next decision point,
is inserted into the schedule. If the queue is empty, but there are activities not
yet released, a gap is created. Technically, gaps are represented as fragments of
a zero-weight, zero-release-time activity, and will be called empty fragments. We
assume that the schedule ends with a sufficiently long empty fragment. Since
there are at most 2n release time and activity completion events, and updating
the queue requires O(log n) time, the algorithm runs in O(n log n) time.

The optimal relaxed schedule for the sample problem is presented in Fig. 2.
The objective value of this relaxed solution of 362. The fragments of activity Ai

are denoted by αi, α
′
i, α

′′
i , etc. Empty fragments are named ε, ε′, ε′′, etc.

4.2 Incrementally Recomputing the Lower Bound

The above algorithm can easily be modified to compute optimal relaxed solutions
for restricted problems Π〈Si = t〉, by assigning ri = t and wi = ∞. This gives
activity Ai the largest wi/pi ratio among all the activities, ensuring that it
starts at t and is not preempted. Relaxed solutions for various restrictions on
the sample problems are presented in Fig. 3.

We apply the above method only once for each activity Ai, restricting it to
start exactly at its release time, i.e., for Π〈Si = ri〉. For other possible start
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Fig. 2. The solution of the relaxed problem, with objective value 362. This is a lower
bound on the original problem.

times, we incrementally convert the relaxed solution of Π〈Si = t〉 into a solution
of Π〈Si = t + 1〉 (or even directly for Π〈Si = t + ∆〉 with ∆ ≥ 1). This recom-
putation is based on the observation that one can represent the transformation
of the relaxed solutions of Π〈Si = t〉 to that for Π〈Si = t+1〉 by a permutation
of unit-duration sections of activities as follows.

Definition 1 The permutation π = (α0, α1, ..., αK) transforms a preemptive
schedule by moving the first unit of each activity fragment αk to the place of the
first unit of α(k+1) mod (K+1). If the moved unit is placed next to a fragment of
the same activity then they are merged, otherwise a new fragment is created.

In Fig. 3, the corresponding permutations are displayed next to each relaxed solu-
tion. For example, moving from Π〈Si = 0〉 to Π〈Si = 1〉 requires the movements
of the first unit of the fragments as follows: α0 → α1, α1 → α2, α2 → ε, ε → α0.
The final move creates a new empty fragment, ε′′.

Lemma 1 The permutation from Π〈Si = t〉 to Π〈Si = t + 1〉 starts with α0 =
Ai, while its further elements can be computed as

αk+1 = the leftmost fragment with S(αk+1) > S(αk) and
w(αk+1)
p(αk+1)

<
w(αk)
p(αk)

.

The permutation ends when it reaches a fragment αK with r(αK) ≤ t. Recall that
the empty fragment at the end of the schedule always satisfies this condition, and
w(Ai) = ∞ is assumed.

Applying permutation π = (α0, ..., αK) increases the total mean busy time of
the preemptive schedule by

C(π) =
K−1∑
k=0

(S(αk+1)− S(αk))
w(αk)
p(αk)

− (S(αK)− S(α0))
w(αK)
p(αK)

,

where S(αk) denotes the start time of fragment αk. Thus, the cost of the new
relaxed solution is C

¯
〈Si = t + 1〉 = C

¯
〈Si = t〉+ C(π).

Transformations of consecutive relaxed solutions Π〈Si = t〉 to Π〈Si = t + 1〉
and Π〈Si = t+1〉 to Π〈Si = t+2〉may be identical. Such is the case for i = 0 and
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Fig. 3. Relaxed solutions of various restricted problems. The corresponding restrictions
are displayed on the left, the permutations applied are shown on the left of the schedule.

t = 0 in the sample problem shown in Fig. 3. Note that the ∆-fold application
of permutation π shifts fragments αk that satisfy S(αk+1) = S(αk)+p(αk) with
∆ units to the right, while it relocates a ∆-long portion of every other fragment
into newly created fragments. Thus, a permutation π on an optimal preemptive



schedule results in optimal relaxed solutions for subsequent problems exactly ∆
times, where ∆ is the minimum of the following values:

(1) p(αk) of fragments αk ∈ π with S(α(k+1) mod (K+1)) 6= S(αk) + p(αk);
(2) r(αk)− S(α0) for fragments αk ∈ π with 1 ≤ k < K.

Condition (1) must be respected because the ∆-long, relocated portion of a frag-
ment cannot be longer than the fragment itself. On the other hand, violating
condition (2) would lead to sub-optimality: after the (r(αk∗) − S(α0))-fold ap-
plication of permutation π, it is a different permutation π′ = (α0, ..., αk∗) that
results in optimal solutions for the subsequent relaxed problems.

The lower bound cost for the new restricted problem can be calculated as
C
¯
〈Si = t + ∆〉 = C

¯
〈Si = t〉 + ∆ · C(π), and linear interpolation can be applied

for determining C
¯
〈Si = t′〉 for t′ ∈ (t, t + ∆).

4.3 From a Lower Bound to Domain Filtering

If both C
¯
〈Si = t〉 > C̄ and C

¯
〈Si = t + ∆〉 > C̄ hold then the complete interval

[t, t+∆] can be removed from the domain of Si. If only the first (second) condi-
tion holds, then the first (second), proportional part of the interval is removed.
No removal is made otherwise. The new lower bound on the total weighted com-
pletion time is computed as C

¯
= maxi mint C〈Si = t〉.

Thus, each recomputation step consist of determining the permutation to
apply and the corresponding ∆, followed by filtering the appropriate variable
domains. These steps are iterated until activity Ai reaches the end of its time
window, and the same procedure is repeated on each activity. The pseudo-code
of the proposed constraint propagation algorithm is presented in Fig. 4.

4.4 Computational Complexity

In order to determine the computational complexity of the propagation algo-
rithm, we first give a bound on the number of recomputation steps during the
filtering of the domain of one start time variable Si. We distinguish between two
kinds of recomputation steps, depending on whether condition (1) or condition
(2) bounds ∆, and call these (1)-type and (2)-type steps, respectively. Recom-
putation steps where (1) and (2) are equally bounding are considered to be of
the (1)-type.

Now, let us define the number of inversions I(σ) as the number of fragment
pairs (α1, α2) in the preemptive schedule σ such that S(Ai) ≤ S(α1) < S(α2) and
w(α1)/p(α1) < w(α2)/p(α2). Since there are at most 2n fragments in σ, I(σ) is
at most O(n2). Observe that I(σ) is strictly decreased by (1)-type recomputation
steps, while it is not affected by (2)-type steps. Therefore, the number of (1)-type
steps is at most O(n2), while the number of (2)-type steps is bounded by the
number of different activity release times, which is not greater than n.

Thus, the complete run of the constraint propagation algorithm takes at most
O(n4) time: for each of the n activities, there are at worst O(n2) recomputation
steps and each step is carried out in at worst O(n) time.



PROCEDURE RecomputeSchedule(σ - schedule, Ai - activity, t - time)

LET permutation π = (Ai)
WHILE r(last(π)) > t OR size(π) = 1

α := leftmost fragment in σ fragments with S(α) > S(last(π))

and
w(α)
p(α)

< w(last(π))
p(last(π))

Append α to π
LET ∆ := min(min(p(αk) | αk ∈ π : S(αk+1 mod K+1) 6= S(αk) + p(αk)),

min(r(αk) − S(α0) | αk ∈ π, 1 ≤ k < K))
σ′ := Schedule obtained by performing π∆ on σ
RETURN 〈σ′, ∆〉

PROCEDURE Propagate()

FORALL activity Ai

LET t := ri

σt := schedule computed by the lower bounding procedure for Π〈Si = t〉
WHILE t < S̄i

〈σt+∆, ∆〉 := RecomputeSchedule(σ, Ai, t)

IF C
¯
〈Si = t〉 > C̄ and C

¯
〈Si = t + ∆〉 > C̄ THEN

Remove [t, t + ∆] from domain(Si)

ELSE IF C
¯
〈Si = t〉 > C̄ THEN

Remove [t, t + d(∆ C̄−C
¯
〈Si=t〉

C
¯
〈Si=t+∆〉−C

¯
〈Si=t〉e − 1] from domain(Si)

ELSE IF C
¯
〈Si = t + ∆〉 > C̄ THEN

Remove [t + b∆ C̄−C
¯
〈Si=t〉

C
¯
〈Si=t+∆〉−C

¯
〈Si=t〉c + 1, t + ∆] from domain(Si)

t := t + ∆
C ≥ maxi mint C〈Si = t〉

Fig. 4. Pseudo-code of the constraint propagation algorithm.

4.5 Implementation Details

While the pseudo-code depicted in Fig. 4 captures the underlying ideas of the
proposed propagation algorithm, its performance can be increased in various
ways. We have improved the average complexity of our implementation of the
algorithm with the following changes:

– Common branching strategies bind activity start times in a chronological
order, which results in a bound head of the schedule. This bound head is
ignored when building the relaxed solutions, only its cost is taken into ac-
count;

– Relaxed solutions are saved during each run of the propagator; filtering the
domain of Si is attempted again only after S

¯ j , j 6= i have increased, or C̄
decreased sufficiently to modify the relaxed solutions.



5 Computational Experiments

We ran computational experiments to measure the efficiency of the proposed
propagation algorithm on the single-machine total weighted completion time
problem with release times. The propagator has been implemented in C++ and
embedded it into ILOG Solver and Scheduler versions 6.1. For propagating the
resource constraint, we used the edge-finding algorithm. We applied an adapted
version of the SetTimes branching heuristic: in each search node from the set of
not yet scheduled (and not postponed) activities, the heuristic selects the activity
that has the smallest earliest start time (EST) and then breaks ties by choosing
the activity with the highest w/p ratio. Two branches are created according to
whether the start time of this activity is bound to its EST or it is postponed.

We compared the performance of three different models. The first used the
standard weighted sum constraint for propagating the optimization criterion
(WS). The second calculated the lower bound presented in Section 4.1 (WS+LB)
at each node and used it for bounding. The third model made use of the proposed
COMPLETION constraint.

These algorithms were tested on benchmark instances from the online repos-
itory [16]. The same instances or the some problem generation method have
been used in various previous works [3, 6, 13, 17]. The repository contains 10
single-machine problem instances for each combination of parameters n and
R, where n denotes the number of activities and takes values between 20 and
200 in increments of 10, while R is the relative range of the release time,
chosen from {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0}. Activity durations are
randomly chosen from U [1, 100], weights from U [1, 10], and release times from
U [0, 50.5nR], where U [a, b] denotes the integer uniform distribution over inter-
val [a, b]. Out of these 1900 instances in total, we ran experiments on the 300
instances with n ≤ 70 and every second value of parameter R. The experiments
were run on a 1.86 GHz Pentium M computer with 1 GB of RAM, with a time
limit of 120 seconds imposed.

The experimental results are presented in Table 1, where each row contains
combined results for the 10 instances with the given number of activities n and
release time range R. For each of the three models, the table displays the number
of the instances that could be solved to optimality (column Solved), the average
number of search nodes (Nodes), and average search time in seconds (Time). The
average is computed only on the instances that the algorithm solved. From these
results we can conclude that the COMPLETION constraint adds significant
pruning strength to the constraint-based approach. This pruning not only paid
off in the means of the number of search nodes, but also decreased solution time
on every instance, compared to both other models. While the classical WS model
fails on some of the 20-activity instances, the COMPLETION constraint enabled
us to solve – with one exception – all problems with at most 40 activities, and
also performed well on the 50-activity instances.

The results also illustrate that instances with release time range R ∈ {0.6, 1.0}
are significantly more complicated for models WS+LB and COMPLETION than
other instances. This is explained by the fact that with R � 1, activities in the



second half of the schedule can simply be ordered by non-increasing wi/pi. On
this section of the schedule, the lower bound is exact and our propagator achieves
completeness. On the other hand, R � 1 leads to problems where only a few
activities can be chosen for scheduling at any point in time, which makes the
instance easily solvable as well.

n R WS WS+LB COMPLETION
Solved Nodes Time Solved Nodes Time Solved Nodes Time

20 20 - - - 10 591 0.00 10 46 0.00
60 2 1842024 62.50 10 1872 0.00 10 95 0.00

100 10 114359 3.60 10 1756 0.10 10 109 0.00
150 10 2518 0.00 10 223 0.00 10 67 0.00
200 10 140 0.00 10 102 0.00 10 51 0.00

30 20 - - - 10 1718 0.10 10 114 0.00
60 - - - 10 20674 2.90 10 417 0.00

100 5 845422 58.60 9 113523 17.00 10 7046 2.90
150 10 21555 1.30 10 1912 0.10 10 189 0.00
200 10 2633 0.10 10 857 0.00 10 159 0.00

40 20 - - - 10 8434 1.30 10 241 0.00
60 - - - 8 290209 57.12 9 4815 4.77

100 2 164455 29.00 4 55760 12.00 10 27366 15.60
150 10 40160 2.80 10 8943 1.30 10 592 0.20
200 10 60602 3.70 10 3685 0.20 10 374 0.00

50 20 - - - 8 89148 22.75 10 1557 2.30
60 - - - - - - 8 31486 55.25

100 - - - - - - 2 26807 41.00
150 3 92954 8.33 7 113198 26.71 10 12180 15.10
200 8 36056 3.25 9 6898 1.22 10 1498 0.80

60 20 - - - 3 161594 49.66 10 16159 33.20
60 - - - - - - - -

100 - - - - - - - -
150 - - - 4 194053 60.25 8 43353 32.75
200 4 120345 12.75 9 48066 11.55 10 5290 4.30

70 20 - - - 2 72540 30.00 6 2591 10.83
60 - - - - - - - -

100 - - - - - - 1 12125 46.00
150 - - - 2 184557 64.50 3 8940 14.33
200 4 228762 43.75 7 108701 34.14 9 14448 12.22

Table 1. Experimental results: number of instances solved, average number of search
nodes and average search time for the different versions of the branch and bound. Dash
‘-’ means that none of the instances could be solved within 120 CPU seconds.

Our goal in this work is to develop a widely applicable constraint rather than
to solve the single machine weighted completion time problem. However, it is
instructive to compare these results directly against state-of-the-art, dedicated



techniques for solving the single machine problem. Our algorithms comparable
favorably to existing LP-based methods [3] that are able to solve instances with
at most 30–35 activities, and earlier branch-and-bound methods [6], which solve
problems with up to 40–50 activities. On the other hand, our approach is out-
performed by two different, recent solution methods. One is a branch-and-bound
algorithm combined with powerful dominance rules, constraint propagation, and
no-good recording by Jouglet et al. [13], which has originally been developed for
solving the more general total weighted tardiness problem. The other is a dy-
namic programming approach enhanced with dominance rules and constraint
propagation by Pan and Shi [17]. These two approaches are able to solve in-
stances with up to 100 and 200 activities, respectively. It should be noted that
a part of the contributions of these works, especially the strong dominance rules
are orthogonal and complementary to the COMPLETION constraint. We expect
that combining such approaches with the COMPLETION constraint would lead
to further performance improvements.

6 Extensions to Other Scheduling Models

Our future work will focus on the application and extension of these results to
more complex scheduling models and other application domains, such as con-
straining the location of the center of gravity in container loading. Below we
sketch two possible extensions.

6.1 Extension to Cumulative Resources

To extend the COMPLETION constraint to cumulative resources (i.e., resources
with a non-unary capacity), we define a variation:

COMPLETIONm([S1, ..., Sn], [p1, ..., pn], [%1, ..., %n], [w1, ..., wn], R, C)

As with the unary case, the scheduling problem involves n activities Ai to
be executed without preemption on a single, cumulative resource. Each activity
is characterized by its processing time pi, a non-negative weight factor wi, and
its resource requirement %i. R represents the capacity of the resource. The total
weighted completion time of the activities will be denoted by C. We assume that
%i and R are constants, however our approach is easily adapted by reasoning with
the lower bound of %i and the upper bound of R.

As above, we use the mean busy time relaxation to obtain a lower bound
on C. A preemptive schedule is prepared chronologically, by choosing at each
decision point the k available activities that have the highest wi/pi ratio, so
that

∑k−1
i=1 %i < R ≤

∑k
i=1 %i holds. A schedule fragment is created in which

activities A1, ..., Ak−1 are processed at rates %1, ..., %k−1, and Ak is processed
at rate R −

∑k−1
i=1 %i. This fragment lasts until the next decision point, which

corresponds to a release time, an activity completion, or a point in time where



the remaining volume of an activity decreases below its previous processing rate.
The complexity of the lower bounding algorithm is O(n2).

However, the cumulative extension of the COMPLETION constraint is more
challenging than the unary version, because recomputing the mean busy time
relaxation for each relevant value of the start time variables imposes an extensive
computational burden in the cumulative case. We are currently investigating
ways of partially relaxing the release times or resource requirements in order to
facilitate quicker computations, at the price of reduced pruning strength.

6.2 Extension to Multiple Resource Problems

In a simple multiple resource problem, each activity requires one or more re-
sources and has a weight. The obvious approach therefore is simply to have one
COMPLETION constraint on each resource and represent the sum of comple-
tion times criterion as the sum of the sum of completion times on each resource,
correcting for activities that require more than one resource.

More interesting is the extension to multiple resource project scheduling prob-
lems with more complex temporal relations amongst activities. For example, in
a job shop scheduling problem, a job is made up of a sequence of activities linked
by precedence constraints. The standard weighted completion model associates
the weight and the completion time of a job to the final activity in the job, as-
signing zero weight to all other activities. We propose a more generic approach
that allows us to use the COMPLETION constraint as defined above, and leads
to more efficient pruning.

In our approach, activities can be assigned arbitrary weights, under the con-
dition that the sum of activity weights within a job must equal the weight of
the job. One COMPLETION constraint is placed on each resource that pro-
cesses weighted activities, and the overall cost of the solution is the sum of total
weighted completion times on each resource. The difference between activity and
job completion times is compensated by a bias computed as the scalar product of
activity weights and the temporal distance of activity and job completions. This
way, weighted activities contribute to the overall cost of the solution both directly
by their weighted completion time, and indirectly by delaying other weighted ac-
tivities that have a lower wi/pi ratio. On the other hand, zero-weight activities
do not affect the cost in either way, unless they satisfy S̄i < S

¯ i +pi, in which case
they must use the resource in the interval [S̄i, S

¯ i + pi]. This can be represented
by a fragment α of appropriate duration, infinite weight, and r(α) = S̄i.

Intuitively, the above considerations imply that the relaxed cost on each re-
source increases super-linearly with the total activity weight on the resource.
Therefore, the strongest pruning is achieved when weighted activities are con-
centrated on a small number of resources. Such a distribution of the weights
can be attained by a preprocessing procedure to assign weights. The procedure
selects the most utilized resource R1 and the set of activities A1 that require R1,
but such that none of their job-successors require R1. To each activity in A1,
we assign the weight of the corresponding job. The procedure continues with re-



peating these steps on the second, third, etc., most utilized resource while there
are jobs not yet covered. Finally, all the remaining activities receive zero weights.

This approach does the opposite of what the classical weight-on-finals ap-
proach does in the case where job-final activities are uniformly spread over the
resources. The superiority of the proposed approach can be best demonstrated
on such problems: in the extreme, where there is at most one job-final activ-
ity on each resource, the classical approach results in no propagation at all. In
contrast, the proposed method can still tighten variable domains by considering
various weighted activities on the same resource. Our future work will focus on
elaborating the details of the assignment of weights to activities in the above
sketched framework.

7 Conclusions

In this paper, we proposed an algorithm for propagating the COMPLETION
constraint, which represents the sum of weighted completion times on a sin-
gle unary capacity resource. The propagation of the constraint exploits a lower
bound arising from the optimal solution to the preemptive mean busy time
scheduling problem which can be found in polynomial time. Using this lower
bound, we propose an algorithm that updates the lower bound on the cost by
incrementally recomputing the optimal preemptive mean busy time schedule for
a carefully structured subset of the possible start times of each activity. The
time complexity of this algorithm is O(n4).

Empirical results on a set of single resource, minimum weighted completion
time benchmarks in the literature show that the COMPLETION constraint sig-
nificantly improves the performance of constraint-based approaches, which is a
considerable result in the field of scheduling with“sum type” objective functions,
an area where constraint programming has not yet been especially strong.

Our future work will examine the extension of this approach to cumulative
resources, scheduling problems with multiple machines such as the job shop
scheduling problem, and other problems with “sum type” cost constraints.
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