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Abstract

In this paper we propose exact solution methods for a bilevel uncapacitated lot-
sizing problem with backlogs. This is an extension of the classical uncapacitated
lot-sizing problem with backlogs, in which two autonomous and self-interested
decision makers constitute a two-echelon supply chain. The leader buys items
from the follower in order to meet external demand at lowest cost. The follower
also tries to minimize its costs. Both parties may backlog. We study the leader’s
problem, i.e., how to determine supply requests over time to minimize its costs in
view of the possible actions of the follower. We develop two mixed-integer linear
programming reformulations, as well as cutting planes to cut off feasible, but
suboptimal solutions. We compare the reformulations on a series of benchmark
instances.

Keywords: Supply Chain Management, Bilevel Optimization, Integer

Programming, Extended formulations

1. Introduction

While most of the operations research literature investigates lot-sizing models
with a single decision maker, it is widely recognized that the lot-sizing decisions

of autonomous partners in the supply chain mutually affect each other. Recently,
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new approaches have been investigated to fill this gap: integrated models with the
objective of minimizing the total cost by centralized planning [17], and coordina-
tion mechanisms for driving the self-interested partners towards optimal perfor-
mance on the system level without giving up autonomy or data privacy [1, 7]. In
this paper we study a new approach based on bilevel optimization.

Consider a two-level supply chain consisting of a producer (or buyer), and
a supplier. The producer faces a time varying external demand, that it wants to
serve at a minimum cost. In order to meet the demand, it requests raw material
or components from the supplier. The supplier in turn optimizes its production
with respect to the supply requests received. Both the producer and the supplier
may backlog (deliver late) some of their demands at the expense of additional
penalty costs (without penalties, both parties may delay deliveries arbitrarily). If
the producer backlogs some of the demands, it pays a proportional penalty to its
customer(s), which raises its costs. Likewise, if the supplier backlogs some of the
supply requests, it must pay a proportional penalty to the producer (for a similar
backlog penalty scheme, see [16]). In addition, if the supplier delivers late, the
producer may be forced to deliver late as well, incurring high penalty costs, unless
it raises its stock levels at the expense of higher holding costs. The producer can
avoid some of the extra costs if it knows the cost structure of the supplier (this may
be the case e.g., if both parties are divisions of the same corporate unit, cf. [5]).
Using this knowledge, the producer can compute the optimal production plan of
the supplier for any choice of supply requests, from which its own costs can be
derived. Therefore, the producer can choose the supply requests such that the
optimal production plan of the supplier for those requests minimizes his costs,
provided there is a computationally efficient way of doing this. The supplier solves
an uncapacitated lot-sizing problem with backlogs (ULSB), where the demands
(supply requests) are set by the producer. However, the producer’s problem is
more complex, since it has to determine the supply requests, while taking into
account the economical considerations of the supplier. In this paper we focus on

the optimization problem of the producer.



The above problem can naturally be formulated as a bilevel optimization prob-
lem, where the producer acts as the leader, and the the supplier as the follower,
for terminology see Section 2.2. The leader decides first, and sets problem pa-
rameters (in our case supply requests) for the follower. Subsequently, the follower
(supplier) solves its optimization problem with the parameters (supply requests)
set by the leader. However, the follower’s optimal solution influences the objec-
tive function value, or even the feasibility of the leader’s solution. Therefore, the

leader has to carefully choose the parameters sent to the follower.

Main contributions. Our goal in this paper is to develop and evaluate mixed-
integer linear programming (MIP) formulations for the bilevel lot-sizing problem
which are solvable efficiently on medium-size instances using a standard solver.
The proposed MIP formulations consist of two main parts: the first part mod-
els the leader’s lot-sizing problem, while the second part describes the optimal
solution(s) of the follower for the supply requests. For modeling the leader’s lot-
sizing problem, we propose two alternative formulations: one based on the ULSB
formulation in the original problem variables, and another using a facility loca-
tion based extended formulation. As for expressing the optimal solutions of the
follower, we use a primal along with the dual of an extended formulation of the
ULSB with variable demands (corresponding to the supply requests). We also
provide new bounds on variables, as well as inequalities to cut off suboptimal so-
lutions of the uncapacitated lot-sizing problems with backlogs. To the best of our
knowledge, this is the first attempt for modeling the bilevel lot-sizing problem as
a MIP, and solving it efficiently by MIP techniques. Moreover, the modeling of
the follower’s optimality conditions using an extended formulation, and without

referring to complementarity conditions [10] is new.

Structure of the paper. The related literature is surveyed in Section 2. The bilevel
lot-sizing problem is formally defined in Section 3. The MIP models are presented
in Section 4. New bounds on variables and cutting planes for strengthening the

linear relaxation of the ULSB problem with variable demands are presented in



Section 5. The approaches are assessed in computational experiments in Sec-
tion 6, and conclusions are drawn in Section 7. Finally, the necessary background

in lot-sizing with backlogs is recapitulated in Appendix A.

2. Related literature

2.1. Lot-sizing

Fundamental results on dynamic lot-sizing models were published in [31, 33].
These papers consider uncapacitated lot-sizing models where the deterministic,
time varying demand is known in advance over a finite planning horizon. Over
the past decades the basic models have been extended by production capacities
and various side constraints, for an overview see e.g., [2, 21, 24]. Albeit dy-
namic programming is still the most efficient method for solving the tractable
cases [20, 30, 31, 33], they have been complemented by linear programming for-
mulations for describing the convex hull of feasible solutions, see e.g., [3, 4, 15,
22,23, 25, 29]. In particular, Kiigiikyavuz and Pochet [15] have given a complete
description of the feasible solutions of the uncapacitated lot-sizing problem with
backlogs (ULSB) in the space of original problem variables. Many times, it is
easier to work with extended formulations, when new variables and constraints
are introduced to obtain the linear formulation. The modeling of various features
in lot-sizing by mixed-integer programs (MIP) are investigated in e.g., [6, 9]. As
further extensions, different lot-sizing and scheduling models, including small-
bucket and large-bucket, discrete and continuous time formulations, as well as
single- and multi-level models are presented in [12, 21]. A tight extended formu-
lation is presented in [20] for uncapacitated two-level lot-sizing, and a formulation

is derived for the multi-item, multi-client case.

2.2. Bilevel programming

Bilevel programming addresses decision and optimization problems whose
outcome is determined by the interplay of two self-interested decision makers

who decide sequentially. The first decision maker, or leader, is assumed to have



a complete knowledge of the second decision maker’s (follower) problem and
parameters. Therefore, to optimize its own objective function, the leader must
consider the response that it can expect from the follower. Unless the follower
has a unique optimal solution for any possible parameter values set by the leader,
the precise definition of a bilevel optimization problem involves a tie-breaking
rule as well. Namely, in the optimistic case, if the follower has more than one
optimal solutions for the same parameter values, it is assumed that the follower
always selects an optimal solution which is the most advantageous for the leader.
In contrast, in the pessimistic case, if the follower’s optimal solution is not unique
for some parameter values, the leader assumes that the least advantageous will
be selected. In that case the leader sets the parameters of the follower such that
the maximum value (over the optimal solutions of the follower with respect to the
given parameters) of the leader’s objective function is minimized (assuming the
leader has a minimization problem).

The motivation for bilevel programming stems from economic game theory.
In a two-player Stackelberg game two competing firms, the market leader and a
follower company, for example a new entrant, produce equivalent goods. The
firms decide their production quantities sequentially, which together determine
the market price, with the aim of maximizing their own profit [28]. The basic
modeling and solution techniques in bilevel programming are presented in [10].
A review of applicable solution methods for various classes of bilevel programs is
given in [8], whereas reformulations of continuous bilevel optimization problems
into single-level problems are discussed in [11]. A combinatorial perspective on

bilevel problems is presented in [19].

2.3. Related applications of bilevel programming

In [5], Bard argued that centralized decision making and planning in large
organizations is unrealistic in practice, and proposed bilevel optimization as an
alternative, more suitable solution approach. As an application, Bard considered
the setting of transfer prices among divisions of a corporate unit, by using (linear)

bilevel programming. The upper level problem is that of the corporate unit, that



wishes to set the internal transfer prices among the divisions in such a way that the
local optimal decisions of the divisions coincide with the corporate optimum. [27]
introduced a bilevel programming model to a production and distribution planning
problem in a supply chain, where the follower’s problem can be modeled by lin-
ear programs, whose parametric solutions can be computed efficiently. A similar
production and distribution problem subject to uncertainties is formulated as a
probabilistic bilevel problem in [26]. [32] investigates the problem of coordinated
planning in a supply chain under hard service time requirements. The production
planning problem of a pharmaceutical company with two machines and n prod-
ucts is investigated in [18]. The leader is interested in minimizing the setup costs
on the two machines incurred from the change of products between periods, and
decides which product to produce on which machine, whereas the follower solves
n lot-sizing problems without backlogs connected by capacity constraints. The
proposed heuristic method governs the assignment of lots to machines, and uses a
MIP solver for solving the follower’s problem exactly.

In [34], the robust lot-sizing problem with a minimax regret objective function
is formulated as a bilevel optimization problem. The input of the problem consists
of an interval of possible demand values for each time period of the planning
horizon, and a set of production periods has to be fixed so that over all feasible
realizations of the demands, the difference between the best solution achievable
by production in the chosen production periods only, and the optimal solution
value (with arbitrary production periods), is minimized. This problem can be
formulated as a pessimistic bilevel optimization problem, where the leader seeks
the best choice of production periods, while the follower tries to find a realization
of demands giving the worst objective function values. This is in strong contrast
to our model, where each level solves a different lot-sizing problem with backlogs.

The bilevel lot-sizing problem studied in the present paper has been already
defined in [14]. In that paper, four approaches for solving the lot-sizing problems
in a two-level supply chain were compared in terms of the incurred costs and the

underlying assumptions, but the computation times were neglected. In fact, the



method for solving the bilevel lot-sizing problem was not able to solve instances

with a planning horizon of 20 time periods within one hour of computation time.

3. Problem formulation

We consider a supply chain that provides a single product to its customers.
It consists of two decision makers, a leader and a follower. The leader faces a
time varying deterministic external demand d}, t =1,...,n, over a discrete time
horizon of n time periods. To satisfy the external demand, the leader computes
a supply request of 6,, t = 1,...,n, and sends it to the follower. The follower in
turn solves a lot-sizing problem with demands ¢, set by the leader. It generates a
production plan that specifies for each period ¢ the amount x? to be produced. In

2 > 0, a fixed cost of f? and a variable cost of p?x?

those time periods ¢ with x
are incurred. The amount x? is used to serve the request &, along with backlogged
requests from previous periods; and the remaining quantity, if any, is kept on stock
to satisfy future requests. The associated marginal costs are g7 for backlogging,
and h? for holding stocks. Backlogging costs are paid as penalties for late delivery
to the leader. In period ¢ the follower delivers a quantity of x! > 0 to the leader.

If the follower backlogs in period ¢, i.e., r?

2 > 0, then x! = 0, i.e., no delivery

occurs. On the other hand, if ¥* = 0, then the delivered quantity x! equals the
sum of demand requests in the interval [¢' + 1,...,7] where t' < t is the latest time
period with xtl, > 0 if such a period exits, and ¢ = 0 otherwise. Therefore, x,1 and
r? satisfy

2 t 1

(6 =

0= 2 0 m }foralltzl,...,n—l. (1)
A delivery of x] > 0 incurs a fixed cost of f!, and a variable cost of p}x! at
the leader. The goods are used to satisfy the demand d! along with backlogged
demands of the leader, and the remaining quantity, if any, is kept on stock. The
inventory holding costs and the backlogging costs of the leader are h! and g/,

respectively. All the demands must be satisfied by the end of the horizon, i.e.,



n 1 _ n _ n 1 _ n 2 :
D dy =220, = 2 X, = >,;_; x;. The main problem parameters are summa-

rized below:

n = number of periods of the planning horizon

d! = external demand of the leader

p! = marginal production costs of the leader

h! = marginal holding costs of the leader

g, = marginal backlogging costs of the leader

f! = fixed production cost of the leader

p; = marginal production costs of the follower

h? = marginal holding costs of the follower

g7 = marginal backlogging costs of the follower

f? = fixed production cost of the follower

The decision variables of the leader and those of the follower are the following:
x! > 0 : production quantity of the leader in period ¢
s1 >0 : stock of the leader at the end of period ¢

r! > 0 : backlog of the leader in period ¢

y! € {0, 1} : indicates leader receives supply in period ¢
6, > 0 : supply requested by the leader in period ¢

x? > 0 : production quantity of the follower in period ¢

52 > 0 : stock of the follower at the end of period ¢



r? > 0 : backlog of the follower in period ¢
y? € {0, 1} : indicates follower produces in period ¢
B? €{0,1} : indicates follower backlogs in period ¢

Without loss of generality we assume that f,l, f,2 > O for all ¢, and to ensure that
the optima are finite, h! + g/ > 0and h> + g> > Oforallz =1,...,n— 1 (cf. [22]).

The optimal solution of the follower depends on the quantities ¢, requested by
the leader, while that of the leader heavily depends on the supply received from
the follower. Therefore, the leader has to carefully choose the requests ¢,. Clearly,
this is a bilevel optimization problem. In the following we focus on the optimistic
case only (cf. Section 2.2). We set up a mathematical program (Bilevel-LS) for

modeling the decision problem of the leader.

n

Minimize Z (p,l)c,1 + f,ly,1 + h,l s,1 + gt] r,1 - g,zrtz) (2)
t=1
subject to

X+ —r =d +s —r, t=1,...,n 3)
t

7= (6= x), t=1,....n @)
=1

x,lsMyll, t=1,...,n (&)

x < M(1 -2, t=1,...,n-1 (6)

sp =8, =1 =1, =0, (7)

x),r, 8,6, >0, t=1,...,n 8)

yi €10, 1}, t=1,....n 9)



y
x2
| € argmin{ (PP + f2yi + ysp + gir?) | (1) — (17)} (10)
r2 t=1
ﬁQ
where
X+, = )=68+(ss—rD), t=1,...,n (11)
x; < My?, t=1,...,n (12)
sg=si=rg=r=0, (13)
x,z,sf,rtzZO, t=1,...,n (14)
y; €40, 1}, t=1,....n (15)
1t < MB?, t=1,...,n—1 (16)
B2 e{0,1) t=1,...,n—1. (17)

In this formulation M is a big constant with M = Y7 d!.

The objective is to minimize the leader’s total cost minus the penalty received
from the follower for backlogged supply to compensate for the increased costs of
the leader [14]. (All our results would remain valid if the leader’s objective func-
tion did not contain the compensation term.) The constraints (3)-(9) and (11)-(15)
represent lot-sizing problems with backlogging with the additional constraints (4),
(6) and (16). Namely, (4) connects the supply by the follower in period 7 to the
production of the leader in the same period, see equation (1), whereas by (6) and
(16), the delivery is x! = 0 if the follower backlogs in period . Moreover, con-
dition (10) expresses that the leader chooses an optimal production plan of the
follower with respect to ¢. If there are several optimal solutions for ¢, then the

leader picks the most advantageous one for itself.
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Table 1: Optimal solution of a sample problem

t 1 2 3 4 5 6 7 8 9 10
d |71 84 43 21 4 81 59 44 32 46
o, |82 73 68 42772 39.77 57.51 | 55.46 2193 44.61
x 82 73 68 82.49 57.51 | 55.46 21.93 44.61
shl 11 25 4 1.49 11.46  1.39
i
x2 | 82 141 140 122

2 68 57.51 66.54 44.61
r 42.72

lllustrative example. There are n = 10 time periods. The leader’s fixed production
cost, and the marginal production, holding and backlogging costs are f' = 100,
p! =1,h! =6, and g' = 18, respectively, in all periods. The cost parameters of
the follower are f2 = 492, p?> = 1, h* = 5, and g*> = 6. Table 1 presents an optimal
solution for this instance of the bilevel lot-sizing problem. The columns of the
table are indexed by the time periods 1 through 10. The rows depict the external
demand d!, the supply requests sent to the follower &;, the supply received from the
follower x!, and the stocking and backlogging quantities, s and r!, respectively,
of the leader; and the production plan x?, the stocking and backlogging quantities,
s? and r?, respectively, of the follower. Notice that the leader never backlogs in

this example. Moreover, the external demand d,1 in periods t = 2,7,9 is satisfied

1
t—1

the leader’s problem from the uncapacitated lot-sizing problem, which always

partly from production and partly from stock, i.e., s'  x! > 0. This distinguishes
admits an optimal solution such that the demand of a period is uniquely served
either from production, or from stock, or from backlog.

In addition to determining its own lot-sizes, the leader also controls the pro-
duction of the follower via the supply requests ;. The optimal values of the supply
requests may deviate both from the external demand d! and the anticipated supply

xtl. For instance, in time period 1, the leader inflates demand (requests 82 units

11



instead of the external demand of 71). This is reasonable because a supply request
less than 82 would cause backlog later at both levels. On the other hand, in period
5, the leader requests a supply of 42.72 units that it will need only later, in pe-
riod 6. This quantity does not trigger production at the follower, since it is more
economical to pay some backlog costs instead of satisfying the request on time.
Hence, the leader’s benefit is the extra backlog compensation obtained from the
follower.

The benefits of moving some of the demands earlier by the leader become ob-
vious by comparison to a solution in which the leader does not move any demands
earlier. This latter solution would incur higher backlogging costs paid to the cus-
tomers, and less backlog compensations received from the follower, and yields a
significantly higher solution value of 1571.14 instead of the value 869.639 of the
optimal solution depicted in Table 1.

This example also illustrates the optimistic aspect of the problem. Namely,
in period 1, the producer requests 82 units. The supplier has a choice between
producing it in period 1, or satisfying it from backlog. The associated cost in
the former case is the setup cost plus the variable cost of production, which is
2+ 82p* = 492 + 82 = 574, whereas if the demand were satisfied from backlog
from period 2, then the cost is again 82(g* + p*) = 82(6 + 1) = 574. Hence, the
supplier admits at least two optimal solutions. Since the supplier chooses the most
advantageous one for the producer by assumption, it will backlog. 0

To avoid pathological cases, we want to ensure that #>s> = 0 in any optimal
solution of the follower. One way to achieve this is to add new constraints s? <
M(1 - ,Bf) ,t=1,...,n—1, to the follower’s program, but this would increase the
number of constraints by n— 1. Alternatively, noticing that a solution with s?7 > 0

cannot be optimal for the follower unless g? + h? = 0, we make the following:

Assumption 1. The backlogging and holding costs of the follower satisfy g*+h?> >
Ofort=1,...,n—1.

12



4. MIP models

In this section we describe two mixed-integer linear programs for solving
bilevel lot-sizing problems. In both MIPs we introduce new variables and con-
straints to describe the connection between the supply requests ¢, and the corre-
sponding optimal solutions of the follower. The two MIPs differ in modeling the

leader’s constraints.

4.1. Formulation MIP-N

Our first formulation is based on a MIP model whose feasible solutions are
those (x%,y%, s%,7%,0) vectors such that (x?,y?, s%,7?) is an optimal solution of
the follower’s ULSB problem with demands (supply requests) 6, > O such that

"0, = K, where K = Y, d! is a fixed constant. Let OP* be the (mixed-
integer) set of these vectors. Firstly, we give an extended formulation for OP?,
and then we will use it in our first formulation for the bilevel lot-sizing problem.

To get an extended formulation for OP?, we express the optimality conditions
of the follower by connecting a primal-, and the dual of an extended formulation
of ULSB by a single constraint. As primal formulation, we choose the objective
function in (10) subject to the constraints (11)-(17). Let ZUV258(5) denote the op-
timum value of the follower for supply requests 6 > 0. As for the dual, we need
a linear program whose feasible solutions provide lower bounds on ZVSB(6), its
optimum value is ZV*58(6) for any 6§ > 0, and the &, occur in the right hand side
only. To get such a linear formulation, we start out from the shortest path for-
mulation (A.7)-(A.8) of Appendix A in which the demand occurs in the objective
function. Notice that this linear program always has a finite optimum for any fixed
§ > 0. Since f2 > 0, there always exists an optimal solution with z;; = y,. Hence,
7 can be substituted out. Taking the dual of the resulting linear program, the ¢,
occur only in the right hand side of the constraints. The dual variables are ¢,2, ¢t2,,

and ¢2, for 7 = 1,...,n, and to simplify notation we define ¢2 , = 0.

D’P(6) = max ¢} (18)

13



subject to

o7 — ¢ < ai, k=t,....n
@2 — @3 < p*o, + [ forallz=1,...,n, (19)
¢tz”_¢]%+l<btzk’ k:t,...,n

where the terms ai’ , and bﬁ’ , are defined in Lemma 6 of Appendix A, (with py, g
and h, substituted by p7, g7 and h?, respectively). Moreover, by the strong duality
of linear programming we have ZV58(5) = DSP(5) for any fixed 6 > 0. We have
the following:

Lemma 1. (22,57, §%,72,8) € OP? if and only if 3, 6, = K, and there exists
@2, B2 such that (fc2 $2, 82,72, 2, 5, ¢°) satisfies the constraints (11)-(17), (19), and

the equation
n

(PP + f257 + hyst + gr7) = 61 (20)

t=1

Proof. First suppose (£, $7, §2,72,6) € OP?. Let ¢* denote an optimal solution
of the dual linear program (18)-(19), and let 32 = 1 if 7> > 0, and 0 otherwise.
Since (£2,§7, §%,#?) is an optimal solution of the ULSB problem with respect to
5, we have ZULSB($) = DSP(8). Hence, (2,97, 82,72, 3%, 6, §?) satisfies all of the
constraints (11)-(17), (19), and (20).

Conversely, suppose (£2, 32, §2, 72, 2, 6, ¢*) satisfies all of the constraints (11)-
(17), (19), (20) and Y7, 6, = K. Clearly, (22,3, §2,#%) is a feasible solution of
the follower’s problem of value ¢2, since it satisfies (20). Therefore, we have
ZVLSB(5) < DSP(5) = ZUESB(6), where the first inequality follows from (20).
Hence, (32, y §2,7) is an optimal solution of the follower’s ULSB for demand
requests ¢, and the statement follows. O
Let OP2, be the set of those (x%,y?, 12, s%, 8% 6,¢%) vectors that satisfy the
constraints (11)-(17), (19), (20), and )}/, 6, = K.

Now we are ready to describe our first MIP for solving the bilevel lot-sizing

14



problem.

n (3)-9),
MIP-N : min (p}x} + £yl +hls! +glr! —g?rf) AD-(17), ¢. (1)
! (19),(20)

We can easily project any feasible solution of MIP-N to a solution of the bilevel-

lot-sizing problem by discarding the values of variables ¢?.

Lemma 2. There is the following correspondence between the feasible solutions
of the bilevel lot-sizing problem and that of MIP-N:

(i) Any feasible solution of MIP-N can be projected into a feasible solution of

the bilevel lot-sizing problem of the same value.

(ii) Conversely, any feasible solution of the bilevel lot-sizing problem can be
extended to a feasible solution of MIP-N of the same value.

Proof. (i) Let(x',y',5', 7,0, %%,y 5%, 7, 5, %) be a feasible solution of MIP-
N. Firstly, we have to verify that (¥, 3, §?,7) is an optimal solution of
the follower with respect to 6. Note that (3), (4) and (7) imply Y, d! =

"Xl =3" 0,16, K=" d! inthe definition of OP?

- 22 22 22
- Since (X7, y7, §°,

2, B%, 0, ¢°) satisfies the conditions of Lemma 1, (X2, y*, 5%, ) is an optimal
solution of the follower for demand 6. Therefore, (%', ', 5!, 7', 9, ¥%, 2, 5%, 7%,
B?) is a feasible solution of Bilevel-LS of the same objective function value
as that of MIP-N.

(ii) Given a feasible solution (¥', y!,5', 7', 0, X, %, i, 7, %) of Bilevel-LS, since
it is optimal for the follower, (X2, y, 5%, 7) is an optimal solution of the fol-
lower’s ULSB problem with respect to demands ¢,. Therefore, there exists a
solution ¢ of (19) which satisfies (20). Hence, (x', ', 5!, 7!, 0, ¥%, 3%, 5%, 7%, B2, ¢*)
is a feasible solution of MIP-N. Clearly, the value of the solution of Bilevel-

LS, and that of the corresponding solution of MIP-N are the same. [

15



Theorem 1. The bilevel lot-sizing problem always has a finite optimum, and the
optimum value is that of MIP-N.

Proof. We argue that MIP-N always has a finite optimum. The statement then
follows from Lemma 2. Clearly, the objective function value is bounded from
below by —M Y- ((p))™ + (B))™ + (g))™ + (g)*"), where (v)~ = —min{0, v}, and
(v)* = max{0, v} (this is a very rough estimation). So, it suffices to prove that
MIP-N has at least one feasible solution. Fix ¢ > 0 arbitrarily such that }/_, §, =
>, d!. By Proposition 2, the follower has at least one optimal solution. Thus we
can fix the values of variables y?, 52, as well as the values of variables x?, s?, 2,
and ¢*. However, the leader’s variables can also be fixed with respect to &; and 32

in an obvious manner, thus a feasible solution is readily available. O]

4.2. Formulation MIP-F

The following formulation is a variant of MIP-N, in which the leader’s lot-
sizing problem is modeled by the facility location based reformulation of ULSB,

cf. Lemma 7 of Appendix A. The leader’s constraints are (4), (6), and

X = Dier Zpo for all k

Y12y =di, for all ¢ )

z, —dy, <0, for all k, t

zt, > 0,yl €{0,1}, forallk,1.

Then the facility location based reformulation is
n o on n (4),(6),(22),
MIP-F: mind > > quz+ > fly | (1D)-(17), (23)

k=1 t=1 t=1 (19),(20)

where g, = (p, + hy +---h! ) ifk < tand g, = (p, +g +---g_,) ifk >t
One may verify that MIP-F is also a reformulation of Bilevel-LS, the details are

omitted.
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5. Valid inequalities on the optimal solutions of ULSB

In this section we derive valid inequalities for the extended formulation of OP?
(cf. Section 4.1). Since our results are valid for ULSB in general, we will omit
the superscript 2. The following lemma enables us to apply the bounds and cuts

developed in this section to the follower’s ULSB problem.

Lemma 3. The bilevel lot-sizing problem always admits an optimal solution in

which the follower has an extreme point solution of ULSB.

Proof. We will prove that any optimal solution of Bilevel-LS can be transformed

7s7, =0,x7r7 =0,and s7 ;7 =0fors=1,...,n. Notice

that 7> = s> = 0 by (13) in any feasible solution, so for t = n we only have to

into one with r2s? = 0, x

verify x7s? | = 0.

Since g2 + h? > 0, r’s* = 0 in any optimal solution of the follower, for 7 =
1,...,n— 1. Now we prove x’r; = 0 and s> ,r7 = 0 for all 7. Namely, rearranging
(11) gives x> + s> | = 6, + r> | — r? + s7. Suppose r7 > 0, then by the previous
point, 57 = 0, and x; = 0 by (6). Since x; = &, + r’ | — r7 by (4), we have
x4+ s2, =6 +r~, —ri=x} =0. Since x2, 52 | > 0, the claim follows.

Finally, we prove that the optimal solution of the follower can be transformed
such that s? | x7 = 0 for all 7, while maintaining r7s? = 0, s7 ;17 = 0, and x}r; = 0
for all 7. Namely, let #* be the smallest index with s7 x; > 0 in the optimal solution
of the follower picked by the leader. Then there exists £ < ¢* with s?_l = 0, and
x? > s? > 2> stz*_ , > 0, where the inequalities follow from the choice of 7 and
¢, and from (11). Since the solution is optimal, we have p? + 3" h2 = p2. Let
A= stz*_l. We transform the optimal solution of the follower by decreasing x?, and
s7 through 5. | by A, and increasing x;, by A. The new solution is still optimal
for the follower, and this transformation has no impact at all on the feasibility or
optimality of the solution of the leader. [

We call a feasible solution of the bilevel lot-sizing problem extreme point so-
lution if the follower’s solution is an extreme point solution of ULSB (cf. Propo-

sition 2). Let Z; denote the minimum cost incurred by backlogging a unit of pro-
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duction from period ¢ to a later period, that is Z, = min,s,+;(p, + Zﬁ;} g). Notice

that Z, does not carry the fixed cost of production.

Lemma 4. The backlogged quantities r, in any optimal solution of ULSB satisfy
Z—por: < fi, fort=1,...,n—1. 24)

Proof. Let (x,y, s,r) be any optimal solution of ULSB. We may assume that it
satisfies the condition of Proposition 2. If r, = 0, then the inequality trivially
holds. So assume that a positive amount of r; is backlogged in period ¢. Then,
the total cost associated with this amount is at least Z,r,, which corresponds to
the variable cost of backlogging it until some period u, and producing it in period
u. On the other hand, if this amount were produced in period ¢ instead, then the
associated cost would be at most f; + p,r,. Hence, if Z,r, > f; + p,r;, the solution
is not optimal, because it would be cheaper to produce the r; products in period ¢
than in a later period. 0

A similar statement can be made about stocking costs. Let S; denote the min-
imum cost incurred by stocking a unit of production from some period u < ¢ until
period ¢, thatis S, = min;,,(p, + Z’V;lu h,). Notice that S, does not carry the fixed

cost of production.

Lemma 5. The stock levels s, in any optimal solution of ULSB satisfy

(Sl_pl‘)st—l < ﬁa fOl"t = 2""7”' (25)

The proof is analogous to that of Lemma 4. We can apply these bounds to
the follower’s and to the leader’s problem as well, and we will call them bound
constraints. However, in our experience, these bounds are effective only when

added to the follower’s problem.

Proposition 1. The set of cuts (26) restricts the follower’s solutions to extreme
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point solutions of ULSB:
sty < M-y =g, t=1,...,n, (26)

where we let 32 = 0 to simplify notation, and M = Y, d.

Proof. We clearly have r?s?> = 0 for all ¢ in any optimal solution of the follower
by Assumption 1. Now, if r2 > 0, then 7 = 1 by (16), and thus s* | = y? = 0
by (26), and then x* = 0 by (12). Likewise, if x> > 0, then y* = 1 by (12),
whence s> | = 37 = 0 by (26), and then r; = 0 by (16). Finally, if s> | > 0, then
y? = 82 = 0 by (26), and thus x? = r? = 0 by (12) and (16), respectively. O

Notice that s>, > 0 and (26) imply y* + 8% < 1.

-1 =
Finally, we mention that the complete linear description of ULSB provided

in [15] cannot be applied directly to strengthening the linear formulation of OP?,
because all the inequalities involve terms of the form d sy;, which are nonlinear if
the ¢, are variables instead of constants.

6. Computational experiments

Computational experiments were conducted to evaluate and compare the effi-

ciency of 10 variants of the proposed MIP models:
MIP-N: formulation (21).

MIP-NB: MIP-N + bound constraints (24) and (25) added to the follower’s prob-

lem.
MIP-NC: MIP-N + cuts (26) added to the follower’s problem.

MIP-NCB: MIP-NC + bound constraints (24) and (25) added to the follower’s
problem.

MIP-F: formulation (23).
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MIP-FB: MIP-F + bound constraints (24) and (25) added to the follower’s prob-

lem.
MIP-FC: MIP-F + cuts (26) added to the follower’s problem.

MIP-FCB: MIP-FC + bound constraints (24) and (25) added to the follower’s

problem.

The models were implemented in the Mosel programming language of FICO
Xpress [13] with default preprocessing and cut generation settings. The bound
constraints and valid cuts were added to the MIP model before optimization was
started in those variants using them. The experiments were run on an Intel Xeon
X5650 2.67GHz computer under a Debian 6.0 operating system. The time limit
was set to 1200 seconds for a single run on each instance.

A set of random problem instances was generated with five different problem
sizes, n € {10, 20, 30, 40, 50}. For each n, 100 problem instances were generated
giving a total of 500 problem instances altogether. The parameters were random-

1zed as follows:

fl < U[100,200]  p! « U[1,5] h! « U[2,20] g « U[4,40]
2« U[250,1000] p? « U[2,10] K’ « U[1,10] g « U[2,20]
d, « U[0, 100]

where Ula, b] is the uniform random distribution over the integers in interval
[a, b].

Table 2 presents the experimental results. All figures in the table are com-
bined results over the instances with the given problem size. Column opt displays
the number of instances solved to optimality out of 100 using the given model.
Columns UB gap (LB gap) contain the maximum and average upper (lower) bound
gaps in percent, respectively. For each instance /, the upper bound gap was com-
0YBDLED “\where UB(I) is the upper bound found by the given MIP

UB(I)
model, and LB*([) is the best lower bound known for the instance, found by any of

puted as 10
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Table 2: Experimental results with MIP-N.

opt | LB gap (%) | UB gap (%) time (sec)

max avg | max avg max avg

n=10 | 100 | 0.00 0.00 | 0.00 0.00 0.49 0.16

Zz |n=201|100 | 0.00 0.00| 0.00 0.00 9.91 1.14
& | n=30|100| 0.00 0.00| 0.00 0.00| 188.00 16.75
| n=40| 88|1736 0.89|16.99 047 | 1200.44 329.86
n=50| 53]15.09 291 | 1238 1.88 | 1200.90 749.97
n=10|100 | 0.00 0.00 | 0.00 0.00 0.53 0.16

% n=201]100| 0.00 0.00 | 0.00 0.00 13.83 1.19
A [n=30|100| 0.00 0.00| 0.00 0.00| 357.02 22.00
S| n=40| 90| 19.68 0.79 | 16.99 0.46 | 1200.30 322.78
n=50| 59| 1441 251 | 11.85 194 1200.58 714.31
n=10]100 | 0.00 0.00 | 0.00 0.00 0.61 0.18

LZ) n=20|100| 0.00 0.00 | 0.00 0.00 8.41 1.20
A [n=30|100| 0.00 0.00| 0.00 0.00  248.62 16.07
= | n=40| 921699 0.60| 17.82 0.46 | 1200.30 248.81
n=50| 51|15.19 277 |11.81 1.88 | 1200.65 730.48

m| = 10 | 100 | 0.00 0.00 | 0.00 0.00 0.76 0.27
O|n=20|100| 0.00 0.00 | 0.00 0.00 8.82 1.54
E n=30|100| 0.00 0.00| 0.00 0.00| 158.35 14.74
§ n=40| 96 | 17.02 0.46 | 16.99 0.44 | 1200.26 227.71
n=50| 65| 12.11 197 | 11.51 1.83 | 1200.55 645.94

.. UB"()-LB()
the approaches. Similarly, the lower bound gap was calculated as 100 —7z7==,

with UB*(I) and LB(I) defined analogously. Columns fime present the maximum
and the average computation times, respectively.

The results show that models MIP-N and MIP-NB outperform MIP-NC and
MIP-NCB only on small instances up to 20 time periods. From n = 30, MIP-
NCB dominates all other variants in the comparison in almost all aspects, except
the maximum lower bound gap, where for n = 40, MIP-NC performs slightly
better, but it solves only 92 instances to optimality compared to 96 by MIP-NCB.
This indicates the efficacy of the bound constraints in eliminating dominated (sub-

optimal) solutions of the follower. We can also observe that combining the bound
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Table 3: Experimental results with MIP-F.

opt | LB gap (%) | UB gap (%) time (sec)

max avg | max avg max avg
n=10| 100 | 0.00 0.00 | 0.00 0.00 0.83 0.35
n=201]100| 0.00 0.00 | 0.00 0.00 21.75 2.52
n=30|100| 0.00 0.00| 0.00 0.00 24245 2482
n=40| 90| 18.53 1.03 | 14.45 0.37 | 1200.48 344.31
n=50| 412885 5.66|12.67 1.90 | 1201.00 868.70
n=10| 100 | 0.00 0.00 | 0.00 0.00 1.08 0.29
n=20|100 | 0.00 0.00| 0.00 0.00 13.48 1.53
n=30|100| 0.00 0.00| 0.00 0.00 22235 2256
n=40| 89 | 1814 0.86 | 16.05 0.39 | 1200.39 315.48
n=50| 53|21.65 3.51|11.84 1.81 | 1200.70 773.40
n=10| 100 | 0.00 0.00 | 0.00 0.00 1.02 0.43
n=201]100| 0.00 0.00 | 0.00 0.00 16.64 1.92
n=30|100| 0.00 0.00 | 0.00 0.00 | 112.50 13.92
n=40| 90| 15.61 0.71 | 13.67 0.34 | 1200.33 291.13
n=50| 452430 5.01|14.78 191 | 1200.81 857.31
n=10| 100 | 0.00 0.00 | 0.00 0.00 1.14 0.47
n=20|100 | 0.00 0.00| 0.00 0.00 15.89 1.94
n=30|100| 0.00 0.00| 0.00 0.00| 10394 11.67
n=40| 97| 13.67 033 | 1459 0.35 | 1200.26 224.12
n=50| 60| 15.74 255 | 11.81 1.75 | 1200.59 743.18

MIP-F

MIP-FB

MIP-FC

MIP-FCB

constraints (24) and (25), and the cuts (26) is really powerful on larger instances.

The results obtained by the four variants of MIP-F are summarized in Table 3.
We can observe that each variant of MIP-F provides weaker lower bounds on av-
erage than the corresponding variant of MIP-N using more computation time in
most cases. Likewise, MIP-F solves less instances to optimality than the corre-
sponding variant of MIP-N in almost all cases. In fact, the LP relaxation of MIP-F
is tighter, but the cutting planes of FICO Xpress are less effective on this formu-
lation. On the other hand, MIP-F has better upper bound gaps on average in some
cases. We conclude that no variant of MIP-N dominates any variant of MIP-F

in all aspects, and vice versa, but MIP-N has an advantage in proving optimality,
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since cutting planes are more effective on this formulation than on MIP-F.

We have also tested further variants both for modeling the leader’s, as well
as the follower’s constraints, but we got inferior results. For instance, the leader’s
constraints could be modeled by a shortest path formulation of ULSB (cf. Lemma 6).
On the other hand, we have also tried to model the follower’s optimal solutions as
shortest paths in a network with arcs corresponding to regeneration intervals and

with parametric arc lengths, but the computational results were weak.

7. Conclusions

In this paper we have developed exact solutions methods for the bilevel unca-
pacitated lot-sizing problem with backlogs. The novelty of our approach lies in the
modeling of the optimality conditions of the follower by using a primal and a dual
formulation for the same problem connected by a single equation, and thus we
can avoid the use of extra binary variables to model complementarity conditions
which is a standard technique in bilevel optimization.

Since by relaxing the integrality of the y? and 52 variables in the definition of

2
ext?

the mixed-integer set OP-_,, the resulting linear system admits feasible solutions
with fractional y* and 82 values, a detailed polyhedral study of the the convex hull

of OP?

- 1s subject to future work. Such a study may be quite useful on its own,

since the parametric solution of ULSB may have further important applications.

The capacitated version of the problem is even more difficult, even if the
follower’s problem is a constant capacity lot-sizing problem with backlogs (CC-
LSB). Although CC-LSB is polynomially solvable, to apply the technique of this
paper, one needs an (extended) formulation for CC-LSB in which the demands oc-
cur in the objective function. The extended formulation of [29] is not appropriate
for our purposes, since the demands occur in the right hand side.

Finally, our approach may be suitable for solving other bilevel optimization
problems where the follower’s problem admits an extended formulation in which
the parameters imposed by the leader occur only in the objective function, and the

optimal solutions have nice structural properties.
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Appendix A. Background in uncapacitated lot-sizing with backlogs

In this section we recapitulate fundamental results on uncapacitated lot-sizing
problems with backlogs (ULSB). The problem with a linear cost function can be

stated as a mixed-integer linear program:

min {Z (Puxi + fiye+ hus; + gir) | (A2) = (A.6>} (A1)
=1
where
Xty —r)=6,+(s,—r), t=1,...,n (A.2)
x; < My, t=1,...,n (A.3)
So=8,=rp=1r,=0, (A4)
X, Si, 1,2 0, t=1,...,n (A.S)
v; € {0, 1}, t=1,...,n (A.6)

In this formulation, p;, f;, h;, r;, and 6, denote the marginal production cost, the
fixed production cost, the marginal inventory holding cost, the marginal backlog-
ging cost, and the demand in time period 7, respectively; and M = };_, ¢, is a big
constant. The variables x;, s;, and r, represent the production, the stocking and
backlogging quantities, respectively, and the binary variables y, indicate whether

there is production in period ¢ or not. Let X2 denote the set of feasible solutions
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of ULSB:
XBE = {(x,y,5,7) € R x {0, 1}" x R™' x R™! | (x,y, s, r) satisfy (A.2)-(A.6)}.

Firstly, recall a basic structural property of ULSB:

Proposition 2. ([22]) The extreme points of conv(X5L) are of the following struc-
ture: there exists 2q indices 1 = €| < i) <, <ip <--- <, <i, < €4y = n such
that

° X = Zf:t,]]_l 6, andy;, =1 for j=1,...,q.

o x;=0andy, €{0,1}fort e {l,...,n}\ {i1,...,i,}

o r,:z,izgjé‘k, and s, =0 forte{l;,....i;— V) forall j=1,...,q.

o5 = ,i’:*;;]l S andr, =0 fort €fij, ...l — 1} forall j=1,...,q.
Moreover, conv(XBL) has n — 1 extreme rays, one foreacht=1,...,n—1:

ss;=r=1,s;=rj=0for j#t,x;=y;=0forall j=1,...,n.

By this result, the extreme points of conv(X5%) partition the interval [1, ..., n]
into regeneration intervals [€;, ..., — 1] for j=1,..., g, between which there

is no material flow (stock or backlog) in any direction. The following extended

Figure A.1: The network of Lemma 6 for n = 3.

formulation is based on solving ULSB by computing a shortest path in an appro-

priately defined network (see Figure A.1). The network consists of 3n + 1 nodes.
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For each time period ¢t = 1,...,n, there are 3 nodes, ¢,#,¢”’, and an extra node
(n + 1). There is an arc from ¢ to ¢, from ¢’ to "/, an arc from ¢t to k' fort < k < n,
and an arc from ¢’ to k with t < k < n + 1. The associated flow variables are v,,,
Zus Vie, and wyi_1, respectively. In addition, an extra variable y, is associated with

arc (¢',1") for each #, to model the fixed cost of production in (A.1).

Lemma 6. (/22]) The optimum value of ULSB equals the optimum value of the

following mathematical program.

n (k-1 n n n—1
L*" = min Z Z QreVie + PrOxZik + Z Drewre +Z f,y,+2(h,+g,)/lt (A.7)
k=1 \(=1 (=k+1 =1 =1
subject to
Dt Via = 1, node 1,
v+ 211 =0, node 1°,
—z11 + 2y wie =0, node 1”,
ZZ:; Vit — Z;(_:l] W1 =0, nodet fort>2,
~ Xt Ve + 21 = 0, nodet’  fort>2, (A.8)
—Zu + 2o Wi = 0, nodet” fort> 2,
=y <0, forallt,
v <, for all t,
Vit Zits Wies Yoo A 2 0, forallt,

with age = prSeset + Yoy 80e, for 1 < € <k <n, and by = pilpsre + Yoy MiOre1 e
for1 <k <{<n, and 6y = Zfzk o, for 1 <k <€ <n. Moreover, v, w, y, and

take integral values in any basic solution. O

Clearly, if h, + g, > O for all ¢ (i.e., the optimum is finite), then the variables
A, can be dropped from the above formulation. Notice that all the demands are in
the objective function. This formulation has O(n?) variables and O(n) constraints.

In the same paper, Pochet and Wolsey describe the facility location based re-
formulation (FL). Let the variable z;, represent the amount of production in time

period k used to satisfy some of the demands in period ¢.
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Lemma 7. ([22]) The optimum value of ULSB equals the optimum value of the

following mathematical program.

n n n n—1
L =min )" > qua+ ) foi+ ) (hi+ g0 (A.9)
=1 =1

k=1 t=1

subject to
D=1 2kt = Oy, for all ¢
2 — 0k <0, for all &, ¢ (A.10)
ke =2 0,0<y, <1, forallk,t,

where gy = (px + i+ -+ b)) if k < tand qi, = (pr + 8+ -+ gk-1) Ifk > 1.

By moving the demands to the objective function, we get a reformulation with
the same properties as the shortest path reformulation. However, the FL reformu-

lation has O(n?) variables, and constraints.
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