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Abstract: The critical decisions related to production system configuration are often supported
by mathematical optimization tools, such as mixed-integer linear programming (MILP) models
built into automated system design software. However, users may have concerns about the
computed optimal solution–or about the absence of a solution–arising from discrepancies
between the mathematical model and their understanding of the problem, or from the
flexibility of input parameters. Thus, to support the decision-making process, it is crucial to
make optimization explainable, i.e., to reinforce the understanding of the user why a given
solution is recommended. This paper proposes an interactive procedure to solve this problem,
where the decision-maker asks consecutive “why not c” type questions, where c is a feature of
the solution encoded in a set of constraints on the decision variables of the MILP. Special focus
is given to the case where infeasibility must be explained. Two alternative search procedures
were implemented to find all possible explanations of infeasibility. The proposed approach was
validated on a medium-scale sample instance of the system configuration problem with 17
tasks requiring 13 resources for their execution. The gained explanations can help identify the
parameters and constraints that require special attention by the user.
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1. INTRODUCTION

1.1 Motivation

Designing complex production systems requires making
decisions based on the complex understanding of a number
of constraints and objectives related to different fields of
engineering. Models based on artificial intelligence (AI)
or classical mathematical methods are frequently applied
to support this process. However, it often happens that
the mathematical model does not completely match the
end users’ understanding of the problem. Moreover, the
algorithm for computing the solution may not be trans-
parent for the end user with a background in engineering,
rather than mathematical optimization. Finally, in early-
stage production system design, parameters are uncertain,
or even can be controlled (e.g., task durations are esti-
mated according to some methodology, but never tested in
physical reality; yet, if needed, they can be tuned by differ-
ent methods, including equipment selection, geometrical
layout, process parameters, etc.). Thus, to support the
decisions of the end users, as well as to build their trust in
⋆ This research was supported by the TKP2021-NKTA-01 and the
2020-1.2.3-EUREKA-2022-00014 grants.

automated problem solving, the level of explainability, that
is the “level of understanding how the AI-based system ...
came up with a given result” (ISO/IEC, 2020), is one of
the most crucial aspects.

Explainable Artificial Intelligence (XAI) focuses on mak-
ing the predictions and recommendations of automated
systems clear and understandable to human experts. While
most effort has been invested into explaining the results of
black-box machine learning approaches (Linardatos et al.,
2021; Mersha et al., 2024), explanations are equivalently
important for classical mathematical optimization tech-
niques. Even though these approaches are much better
interpretable for the expert who designed them, the end
user with a different background may still perceive them
as black boxes and need support in understanding why a
given solution is recommended.

1.2 Literature Review

The literature of explainability in the field of mathematical
optimization is rather scarce, however, significant advance-
ments have been made recently. (Goerigk and Hartisch,
2023) introduced a generic optimization framework to con-
struct interpretable decision rules for optimization prob-



lems in the form of decision trees, sacrificing exact opti-
mality for interpretability. (Ott and Jäkel, 2024) proposed
techniques for explaining the optimal solutions of linear
programs to non-expert users. Contrastive explanations
for combinatorial optimization problems, comparing the
optimal solution to given alternatives, are investigated in
(Erwig and Kumar, 2024), with illustrations on various
graph problems. In (Aigner et al., 2024), a data-driven
approach is proposed for computing explainable, close-to-
optimal solutions for optimization problems that resem-
ble favorable past solutions but differ from unfavorable
previous solutions. The explainability of AI planning was
investigated in (Fox et al., 2017). In the same context,
(Krarup et al., 2021) proposes contrastive explanations
for answering “why A rather than B” type questions.
The approach is extended to explaining the differences
in the quality of the two plans in (Krarup et al., 2024).
(Chakraborti et al., 2017) argue that explanations must
focus on the differences between the planning model and
the user’s understanding of the problem, and interpret
explanations as a model reconciliation problem (MRP),
looking for minimal modifications of the user model in
such a way that the optimal solution of the planning model
becomes optimal for the user as well. (Nguyen et al., 2020)
propose an answer set programming approach for solving
the MRP.

In this paper, the focus is on the production system con-
figuration problem for flow systems. This problem can
be seen as a major extension of the assembly line bal-
ancing problem (ALBP) (Becker and Scholl, 2006) with
detailed resource requirements. For a recent survey of
ALBP, see (Boysen et al., 2022). In (Battäıa et al., 2020),
a mathematical programming approach is proposed for
a configuration problem with a very detailed resource
model, tailored to flow lines with reconfigurable machine
tools. (Tsutsumi et al., 2022) deals with the integration
of production system configuration and task sequencing
using a mixed-integer linear programming (MILP) model.
(Dobrovoczki et al., 2024) proposes a Benders decomposi-
tion method for solving a generic configuration-and-layout
problem.

1.3 Contributions

The insight provided by explanations on why given solu-
tions are recommended by automated optimization soft-
ware is particularly valuable and relevant in early-stage
production system configuration where a considerable
share of the input parameters are uncertain or negotiable.
Despite this, to the best of the authors’ knowledge, ex-
plainability has not been studied in the field of production
system configuration.

Accordingly, the main contribution of this paper is propos-
ing an interactive explainability framework for production
system configuration, presenting how the baseline opti-
mization model must be extended to compute the desired
explanations, as well as illustrating the proposed approach
on a medium-scale sample problem.

1.4 Structure of the Paper

This paper is structured as follows. After a formal problem
definition (Section 2), a MILP model of the production

system configuration problem is formulated in Section 3.
Section 4 introduces the proposed approach to explaining
the optimal solution. The approach is demonstrated via
an illustrative example in Section 5. Finally, conclusions
are drawn and directions for future research are proposed
in Section 6.

2. PROBLEM DEFINITION

The investigated production system configuration problem
addresses the design of a single serial production line
to manufacture multiple products according to the given
process plans. The process plan of each product consists
of a fully ordered sequence of tasks. The rough structure
of the line is specified by the customer and also given
in the input: the line consists of multiple stations along
a conveyor, and tasks must be executed at predefined
locations within a given station. This defines a three-
level hierarchy of locations, stations, and the single line.
The optimization problem consists in selecting the specific
resources to install at the different nodes of this hierarchy
most efficiently.

Each task requires one or multiple functions for its execu-
tion; e.g., a screw driving task requires the screw driving
function. Accordingly, a resource that provides the given
function must be selected from a predefined resource li-
brary, installed into the line, and assigned to the task; e.g.,
the screw driving function requirement can be satisfied
by an electric or a pneumatic screwdriver. In a similar
fashion, the selected resources themselves can require fur-
ther functions, e.g., the pneumatic screwdriver requires the
compressed air function, which can be provided by one of
the available air compressors. Each function requirement,
either stemming from a task or a resource, must be sat-
isfied by a resource installed at the source node of the
requirement, or a node above the origin of the requirement
in the hierarchy. For instance, to satisfy the compressed
air function requirement stemming from the pneumatic
screwdriver installed at the location of the screw driving
task, the air compressor must be installed at that specific
location, at the given station, or on the line level. In this
case, it might be worth installing the compressor on the
line level, since then it can provide compressed air to all
other resources in the entire line. For each resource in
the library, it is defined whether it can be installed on
the location, on the station, or on the line levels of the
hierarchy. The investment cost of each resource is also
given in the input.

The input also contains a prescribed cycle time for each
product. The cycle time of the entire line is determined by
the slowest station, whereas the cycle time of a station is
defined by the sum of the durations of the tasks executed
sequentially on the product within the station. Task du-
rations depend on the assigned resources. Moreover, syn-
chronization constraints between pairs of stations are also
imposed, to capture the fact that multiple parts are passed
between the stations at specific points in time within a
single cycle. Each synchronization constraint states that
the total duration of two subsets of tasks must be equal.

Then, the production system configuration problem in-
volves determining the resources installed at the different
nodes of the resource hierarchy (binary variable xisl in-



Table 1. Notations.

Indices

j Product index
t Task index
i Resource index
s Station index
l Location index
f Function index
k Synchronization index

j(t) Product belonging to task t
s(t) Station belonging to task t
l(t) Location of task t

Input parameters

Λ Set of resources applicable on line level
Σ Set of resources applicable on station level
Π Set of resources applicable on location level
Rt Functions required by task t
Qi Functions required by resource i
Pi Functions provided by resource i
dti Duration of task t when executed by resource i
Tj Cycle time limit of product j(

τk1 , τ
k
2

) For synchronization k, task sets τk1
and τk2 must be synchronized

ci Investment cost of resource i

Decision variables and objective

δt Actual duration of task t in the configuration
ρfsl Function f is required at location l of station s
xisl Resource i is installed at location l of station s
yti Task t is assigned to resource i
C Investment cost

dicates whether an instance of resource i is installed at
station s, location l), as well as the resource assigned
to each task (binary variable yti indicates if task t is
executed by resource i) in such a way that all the above
constraints are satisfied and the total investment cost is
minimized. The notation is summarized in Table 1. In the
representation of the three-level resource hierarchy of line,
stations and locations, station index s > 0 and location
index l = 0 indicate the node corresponding to station s,
whereas s = 0 and l = 0 stand for the line.

It is emphasized that the above description presents the
baseline problem, which can be easily formulated and
solved as a MILP, as detailed in Section 3. The challenge
addressed in this paper is explaining the computed solu-
tion to the user of the automated system design software.

3. MATHEMATICAL MODEL FOR SYSTEM
CONFIGURATION

The mixed-integer linear programming (MILP) model of
the system configuration problem is presented in Figure 1.
The objective is to minimize the investment cost (1).
Constraint (2) ensures that every task is assigned to
exactly one resource. Constraints (3), (4) and (5) state
that each resource can be installed only on the appropriate
levels of the resource hierarchy, i.e., on the line, on the
station, and on the location levels, respectively. Line
(6) encodes that no location exists outside the stations.
Constraint (7) states that a resource can be assigned
to a task only if it satisfies all function requirements of
the task. Inequality (8) ensures that a resource can be
assigned to a task only if it is installed on the appropriate
branch of the resource hierarchy, on the location, station
or line level. Function f is required at location l of

station s if it is required by an assigned resource (9) or
a task executed there (10). Constraint (11) states that
every function requirement must be satisfied by a resource
installed at or above the location of the requirement in the
resource hierarchy. Inequality (12) accounts for the actual
task durations, which might be greater than the duration
values originally prescribed for the given combinations
of task and resource due to synchronization constraints.
Constraints (13) and (14) ensure that cycle time limits and
the synchronizations are respected. Equation (15) defines
the investment cost. Finally, lines (16), (17) and (18) list
the binary variables in the model.

4. EXPLAINING THE SOLUTION

While computing an optimal solution to the model detailed
in Section 3 might be mathematically straightforward
using present-day MILP solvers, convincing the human
expert about its suitability can pose a challenge. Doubts
about the solution may arise due to the differences between
the optimization model and the user’s understanding of
the problem, due to the lack of trust in the solution
techniques, or it can happen that the input parameter
values are not set in stone, but rather negotiable with other
stakeholders in the overall design workflow.

In this paper, it is assumed that such concerns of the hu-
man expert are addressed during an interactive procedure,
in which the expert asks consecutive “why not c” type
questions about the solution. Here, in general, c can be

minimize
C (1)

subject to∑
i

yti = 1 ∀t (2)

xi00 = 0 ∀i ̸∈ Λ (3)

xis0 = 0 ∀i ̸∈ Σ (4)

xisl = 0 ∀i ̸∈ Π (5)

xi0l = 0 ∀i, l ≥ 1 (6)

yti = 0 ∀t, i : Rt ̸⊆ Pi (7)

yti ≤ xis(t)l(t) + xis(t)0 + xi00 ∀t, i (8)

ρfsl ≥ xisl ∀i, s, l, f ∈ Qi (9)

ρfs(t)l(t) ≥ 1 ∀t, f ∈ Rt (10)

ρfsl ≤
∑

i:f∈Pi

xisl + xis0 + xi00 ∀f, s, l (11)

δt ≥
∑
i

dtiyti ∀t (12)

Tj ≥
∑

t: s(t)=s ∧ j(t)=j

δt ∀j, s (13)

∑
t∈τk

1

δt =
∑
t∈τk

2

δt ∀k (14)

C =
∑
i,s,l

cixisl (15)

xisl ∈ {0, 1} ∀i, s, l (16)

yti ∈ {0, 1} ∀t, i (17)

ρfsl ∈ {0, 1} ∀f, s, l (18)

Fig. 1. MILP model of the line configuration problem.



any feature of a solution that can be encoded in a set of
constraints on the decision variables in the MILP model.
The actual prototype allows for the following types of
questions:

• “Why don’t we use resource i at location l of station
s?”: This feature can be enforced by adding side
constraint xisl = 1 to the MILP.

• “Why don’t we use resource i for executing task t?”:
Side constraint yti = 1 is added.

• “Why cannot we do it at a lower cost of C ′?”:
Inequality C ≤ C ′ is added.

• “Why cannot we achieve better productivity, reduc-
ing the cycle time of product j to T ′

j?”: The stricter
upper bound on the cycle time is translated directly
into an updated value of Tj .

The optimization model is then solved with the additional
set of constraints translated from the user’s questions.
In case the restricted model is feasible, the answer to
the user’s question is “Yes, this is possible”, and the
detailed solution is presented. An interesting direction for
further development is minimizing the difference between
the updated solution and the original one. However, it
is very unlikely to have several solutions with the same
objective value in practical scenarios, and therefore, this
direction is considered future research.

The main focus is the case when the model restricted
by the user’s constraints becomes infeasible. Then, an
explanation of infeasibility consists of a set of constraints
whose relaxation restores feasibility, e.g., “Your request
can be satisfied if the cycle time of product 3 can be
increased from 36 s to 40 s”. To find such explanations,
the constraints of the MILP model that can be relaxed are
identified and handled as soft constraints. These involve
constraints that are possibly not part of the user’s model;
that express a preference rather than a hard requirement;
or whose coefficients can be negotiated. In the current
MILP model (1)-(18), the following constraints are re-
garded as soft constraints:

• Constraint (2) expressing that each task is assigned

to a resource. Additional binary variables α
(2)
t are

created, where α
(2)
t = 1 indicates that constraint (2)

is relaxed for task t.
• Inequalities (11) encoding that function requirements

are satisfied. A binary variable α
(11)
fsl is created for

each f , s, and l.
• Constraints (13) on the cycle time for each product j

and station s. Binaries α
(13)
js are added.

• Synchronization constraints (14). A binary variable

α
(14)
k is added for each synchronization constraint k.

• Equality (15) defining the investment cost. A single
variable α(15) is added.

Next, an optimization model for computing a minimum-
cardinality explanation is constructed by adding the above
binary variables to the MILP, and replacing each soft
constraint with the indicator constraint that states that
the original constraint holds unless the assigned binary
variable has a value of 1. E.g., the task assignment con-
straint (2) is replaced with the indicator constraint:

(α
(2)
t = 0) ⇒

∑
i

yti = 1 ∀t

Most state-of-the-art MILP solvers support such indicator
constraints to express logical inference. In less advanced
solvers, indicator constraints can be converted into linear
inequalities with appropriate big-M coefficients.

Finally, the original objective function is replaced with the
minimization of the number of violated soft constraints:

V =
∑
i

α
(2)
i +

∑
fsl

α
(11)
fsl +

∑
js

α
(13)
js +

∑
k

α
(14)
k + α(15)

Multiple alternative minimum-cardinality explanations
may exist, and each of them might be of interest to the
user. Two alternative search procedures were implemented
to find all such explanations. Both procedures start with
minimizing V . Then, the first procedure, called Solution
pooling relies on the ability of the MILP solver to find all
solutions with V = Vmin, and collect each of them into a
solution pool. Two solutions are regarded as different if
they differ in the values of the binary variables (including
both the variables of the original MILP and the additional
binaries).

In contrast, the Iterative procedure computes the alterna-
tive explanations one by one. Let Am denote the set of
binary variables assigned to the constraints relaxed in the
explanation found in iteration m. Then, in iteration m+1,
additional constraints of the form∑

α∈Am′

α ≤ |Am′ | − 1 ∀m′ = 1, ...,m

are added to ensure that the new solution is different from
any previous explanation.

Finally, the constructed explanations are presented to the
user. To show how these explanations support the user
in understanding the results of the optimization engine,
the proposed techniques are illustrated on a medium-scale
example in the Section 5.

5. ILLUSTRATIVE EXAMPLE

The proposed approach was validated on a medium-scale
example motivated by the Bosch Rexroth i4.0 Mechatron-
ics Training System, see Fig. 2. The line performs the
assembly of a single product from two parts. The first,
feeding station loads the two parts onto the conveyor and
inspects them. The two parts are transferred separately to
the second, assembly station, which results in a synchro-
nization between the two stations. Finally, the assembled
products are stored in the high-bay warehouse of the third
station. The overall assembly process consists of 17 tasks,
which require altogether 13 resources for their execution.
While 10 out of the 13 resources are unambiguously de-
termined by the function requirements, 3 resources can
be selected from multiple candidates, resulting in different
trade-offs between cycle time and investment cost.

The cheapest feasible configuration costs EUR 38 450, and
incurs a cycle time of 39.6 seconds. In the example, the
line designer wants to understand why this configuration
just misses the target cycle time of 39 seconds. In the pro-
posed approach, this translates to adding the constraints
C ≤ 38 450 and T ≤ 39 (for convenience, the product



Fig. 2. The Bosch Rexroth i4.0 Mechatronics Training
System.

index is omitted), resulting in an infeasible problem. The
proposed approach generates the following 10 alternative
explanations of infeasibility, each corresponding to the
relaxation of a single soft constraint in the original line
configuration model:

To achieve feasibility, the designer can...

• remove one of the given seven tasks from the pro-
cess plan, i.e., relax constraint (2) for some t ∈
{5, 6, 7, 8, 13, 14, 15}. Indeed, these seven tasks define
the single critical path in the schedule, see Fig. 3.
Removing any of them decreases the cycle time to at
most 38.2 seconds. Such a modification of the process
plan may be feasible, e.g., inspection tasks can be per-
formed offline, before loading the parts. Eliminating
any other task does not improve performance.

• remove the synchronization between the first and the
second stations, relaxing constraint (14). This can be
achieved, e.g., by adding a buffer between the two
stations.

• speed up the tasks in the second station to reduce
their total duration by 0.6 seconds, i.e., relax con-
straint (13) for station 2. Note that the other two
stations already satisfy the desired cycle time.

• Negotiate resource costs, relaxing constraint (15).
This makes it possible to use more advanced and
faster resources.

The benefit of these explanations for the user is that
they help identify the most likely (i.e., minimal) difference
between the optimization model and the user model. After
conducting the necessary analysis, the user can either
adjust the optimization model to align with the user
model or accept the optimization model as valid and
the computed solution as truly optimal. In either case,
these explanations contribute to high-quality automated
solutions also acceptable for the user.

The approach was implemented using the FICO Xpress
v8.8 MILP solver, and experiments were run on a laptop
computer with Intel i7 1.80 GHz CPU and 16 GB RAM.

Fig. 3. Gantt chart of the tasks executed at the three
stations.

The computation times for the two implemented search
procedures, Solution pooling and Iterative, are displayed
in Table 2. Finding the first explanation using either
procedure required just slightly more computation time
than solving the original problem (0.05 versus 0.04 sec-
onds). Finding all 10 alternative explanations took 0.35–
0.36 seconds. The significant difference in the performance
of the two solvers became apparent when looking for a
proof that no further explanations exist. With the simple
Solution pooling approach, search did not terminate within
the designated two-hour time frame. In contrast, the Itera-
tive procedure could prove completeness immediately after
finding those 10 explanations.

Table 2. Computation times.

Solution pooling Iterative

Original configuration problem: 0.04 s
First explanation 0.05 s 0.05 s
All 10 explanations 0.35 s 0.36 s
Proof of completeness > 2 h 0.36 s

6. CONCLUSIONS AND FUTURE RESEARCH

This paper proposes a method for computing explanations
for production system configuration problems that provide
valuable insight into why given solutions are proposed by
automated design software. This is particularly relevant in
the field of early-stage production system configuration,
where a significant portion of the input parameters origi-
nate from other steps in a complex design workflow. Hence,
explanations help identify the parameters and constraints
that require special attention and can be negotiated with
fellow experts working on the related design steps. Such
decision support helps achieve goals that seem unrealizable
based on the output of a classical optimization engine.

The reported results are just a first step towards explaining
the solutions to such production system design problems,
and some research questions are still open. Perhaps the
main limitation of the current approach is that the number
of alternative explanations can become huge. To tackle this
issue, search must focus on constructing diverse explana-
tions that are the most likely to identify the differences
between the optimization model and the user model. More-
over, the computed explanations must be presented to the
user in a comprehensible way, using graphical illustrations
and natural language explanations, to contribute to the
success of an iterative, mixed-initiative decision process.
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