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ABSTRACT

The paper addresses robust bilevel optimization with polyhedral uncertainty in the
followers’ objective function coefficients. It is assumed that both the leader’s and the
followers’ models are linear, yet, bilinear terms in the followers’ objective function
are allowed. An efficient algorithm is introduced that finds a bounded-error solution
in a finite number of steps. This model captures typical price setting applications,
such as network toll setting or electricity tariff optimization for demand response
management. The efficiency of the general method is illustrated on demand response
management in smart grids. Our computational experiments show that the method
solves instances with hundreds of decision variables. The significance of these results
is underlined by a proof that the above demand response management problem, and
hence, the generic robust bilevel problem as well, are ¥~0-complete. Finally, the
infinitely robust variant of the problem is discussed, and it is shown to be tractable
in polynomial time.

KEYWORDS
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1. Introduction

Bilevel optimization tackles the challenge of finding the equilibrium in decision prob-
lems involving multiple stakeholders. The player called the leader makes its choice
first, which is observed by its followers, who determine their response by optimizing
their own objectives. Hence, when looking for its optimal decision, the leader must ac-
count for the rational response of the self-interested followers. Accordingly, a critical
assumption of classical deterministic bilevel approaches is that the leader has complete
knowledge of the decision problems of its followers. Since this assumption is unrealistic
in many applications, robust bilevel optimization is receiving increasing attention as a
promising approach to make use of the available, yet imperfect information about the
followers. Theoretical foundations are being elaborated [1] and the first applications
are emerging in problems such as hazardous material (hazmat) transportation network
design [2], homeland security [3], electric vehicle (EV) charging station design [4], and
the scheduling of EV charging [5].

This paper addresses robust bilevel optimization problems where uncertainty occurs
in the coefficients of the followers’ bilinear objective function in the form of polyhedral
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uncertainty sets, and both the leader’s and the followers’ constraints are linear. It
is assumed that uncertainty realizes after the leader has committed to its decision,
but before the followers determine their response, i.e., followers solve deterministic
problems. This assumption corresponds to so-called wait-and-see followers [1]. With
this, the Robust Bilevel Optimization Problem (RBOP) addressed in this paper can
be stated as follows:

sup z (1)
s.t.

min{f(z,y) |ve U, y € Qz,u)} >z (2)
reX (3)

where X is a polytope consisting of all the feasible solutions x of the leader, U is
a polyhedral set of uncertain parameters of the follower(s), and Q(x,u) is the set of
optimal solutions of the follower(s) for fixed z and u, i.e., y € Q(x,u) if and only if y
is an optimal solution of the parameterized linear program (LP)

max{(u— )"y |y €Y} (4)

where Y is a polytope. Note that (4) can be a minimization problem as well. Observe
that the objective function is linear for fixed v and z. In (2), the minimum is taken over
allu € U and y € Q(z,u), i.e., robustness also incorporates the pessimistic assumption
on the choice of the followers’ response when Q(z,u) is not singleton.

In the objective function (1), we have to use supremum, since our problem contains
pessimistic bilevel optimization as a special case when U is a singleton, where the
optimum value cannot be attained in general, see e.g., [6]. From now on, z* denotes
the supremum value.

Throughout this paper, we assume that

flzy) = (c+2)"y,

where c is a constant vector. Moreover, by assuming that Y is a non-empty polytope,
Q(z,u) is never empty. The notation applied in the paper is summarized in Table 1. For
basic definitions on linear and integer programming, as well as on polyhedral theory,
we refer the reader to [7]. The feasible solutions of RBOP (1)-(4) are characterized
next.

Definition 1.1. Some (x,y,u) is robust bilevel feasible if and only if z € X, u € U,
y € Q(z,u) and for any v’ € U and ¢’ € Q(z,v'), we have f(z,y) < f(z,9).

Definition 1.2. Given an error bound € > 0, a robust bilevel feasible solution (z,y, u)
is e-optimal if 2* — f(z,y) < e(|z*] + 1).

Main results. For polyhedral U, we propose a novel algorithm that computes solutions
for RBOP that approach its supremum arbitrarily well. The approach is illustrated on
a demand response management problem in smart electricity grids. The computational
results show that the proposed method approaches the supremum with a small error for
test instances with up to 15 followers and 15 time periods. Our modeling, algorithmic
and computational results are complemented by two theoretical results about the
complexity of the problem. On the one hand, we prove that the general problem is



Table 1. Notation.

Problem size and indices

Number of vertices of polyhedron Y’
Index of vertices of polyhedron Y
Number of discrete uncertainty values
Index of discrete uncertainty values
Application: number of followers
Application: follower index
Application: number of time periods
Application: time period index
] set of integers in the interval [1, N] for any integer N > 1

ZoRTETACE

Input parameters

X Leader’s feasible region

Y Followers’ feasible region

Y Vertices of polyhedron Y

U Uncertainty set

c Constant in leader’s objective

Dt Application: wholesale electricity price

di, d; Application: min. and max. total consumption of consumer 4

Yit, Yit Application: min. and max. consumption of consumer 7 in period ¢
rd Constraint coefficients defining X

vI Constraint coefficients defining U

Decision variables and objectives

Leader’s variables (application: electricity tariff)
Followers’ variables (application: electricity consumption)
Followers’ uncertain parameters (application: consumers’ utility)
Leader’s objective value (application: retailer’s profit value)
(z,v) Leader’s objective function (application: retailer’s profit function)
* Leader’s supremum

NN ey

Parameters used by the algorithm

Us Uncertainty set extended by §

28 Leader’s supremum over Ug

P Discrete uncertainty set built by the algorithm

2P Leader’s maximum over UP

iter Iteration count

N(y) Neighboring vertices of y in Y

Q(z,u) Follower’s set of optimal responses to (z,u)

Projz(-)  Projection of a set to X

P(y) Set of (z,u) such that y € Q(z,u)

a, B Dual variables

A Characteristic radius (distance between followers’ objective values)
0 Characteristic radius (distance between leader’s variables)

¥P-hard. This complexity result implies that our problem is located outside NP unless
the polynomial hierarchy collapses. For basic definitions on the polynomial hierarchy,
we refer to [8]. On the other hand, we introduce a special case called the infinitely
robust variant, and show that this variant can be solved in polynomial time.
Organization of the paper. The literature on robust bilevel optimization is reviewed in
Section 2. Key notions are introduced and core properties of RBOP are established in
Section 3. A generic solution method is proposed and its main features are discussed in
Section 4. Then, Section 5 illustrates the generic method via an application to demand
response management in smart grids. The efficiency of the algorithm is investigated in
computational experiments in Section 6. Further theoretical results on the computa-
tional complexity of RBOP are presented in Section 7. Finally, conclusions are drawn
in Section 8.



2. Literature review

2.1. Robust bilevel optimization

A critical assumption of classical, deterministic bilevel optimization approaches is that
the leader is perfectly aware of the followers’ decision model and parameters, and
hence, it can accurately predict the followers’ response to any possible decision [6].
Obviously, this assumption cannot be satisfied in most practical applications. As a
possible means to lift this critical assumption, approaches to bilevel optimization un-
der uncertainty, including both robust and stochastic techniques received significant
attention in recent years. An excellent review and classification of such robust (and also
stochastic) bilevel approaches is presented in [1]. The review highlights that sources
of uncertainty in a bilevel context can be significantly richer than in single-level opti-
mization, and categorizes these sources as data uncertainty and decision uncertainty.

2.2. Robustness against data uncertainty

Approaches to model data uncertainty can be classified further according to the param-
eters impacted by uncertainty; the assumptions on the uncertainty set, e.g., discrete,
box, ellipsoidal or polyhedral sets; as well as the timing of the decisions. For the latter,
wait-and-see followers, who observe the realization of the uncertain parameters before
making their decisions, are differentiated from here-and-now followers who must de-
cide before realization, meaning that the follower’s sub-problem is in itself a robust
optimization problem.

Paper [9] investigates bilevel problems with polynomial leader’s objective and in-
terval uncertainty in both the upper- and lower-level linear constraints. The problem
is solved via a series of single-level non-convex polynomial relaxations. The approach
is illustrated on a few examples with a single leader and a single follower variable.
The approach is extended to a more generic problem class with polynomial leader and
follower constraint functions in [5], and it is illustrated on an application to scheduling
the charging of EVs.

The complexity of the robust bilevel continuous knapsack problem with different
forms of uncertainty in the follower’s objective is studied in [10]. The problem can
be solved in polynomial time in the deterministic case, and the authors show that
this result generalizes to the case of discrete and interval uncertainty sets. However,
the same problem becomes NP-hard in case of discrete uncorrelated uncertainty (i.e.,
where the uncertainty set is given as a Cartesian product of finite sets), as well as
for polyhedral and ellipsoidal uncertainty. Generic robust linear bilevel problems with
uncertainty in the follower’s objective are investigated in [11]. It is shown that the
robust problem under interval uncertainty can be X5-complete even if the deterministic
bilevel version is contained in NP and the follower’s problem is polynomially solvable.
At the same time, the robust problem with discrete uncertainty is located at most one
level higher in the polynomial hierarchy than the follower’s sub-problem.

A T'-robust approach to discrete min-max problems with uncertainty in the follower’s
parameters, including its objective and constraints, is presented and a branch-and-cut
algorithm is proposed in [12]. The approach is illustrated on a knapsack interdiction
problem.



2.3. Robustness against decision uncertainty

In addition to data uncertainty, bilevel optimization problems may also be exposed
to decision uncertainty when the leader, even if aware of the exact parameter values,
is unable to predict precisely the behavior of its followers. A basic form of decision
uncertainty is captured by the pessimistic bilevel problem: followers may have multi-
ple optimal responses to the deterministic problem they face, but these bring different
benefits for the leader [6]. In such a situation, the leader may want to prepare for
receiving the least favorable optimal follower response. Optimality conditions for pes-
simistic bilevel optimization are derived in [13,14]. An efficient solution approach is
proposed for a generic class of pessimistic bilevel problems based on a tight bilevel
relaxation and a correction operation in [15]. In [16], it is proven that independent
pessimistic bilevel problems (i.e., where the followers’ feasible region is independent
of the leader’s decision) take an optimal solution if the followers’ objective function is
additively separable. On the contrary, if the objective is not separable or the problem
is dependent, then problems in general do not admit an optimal solution. Observe that
the problem addressed in this paper is independent, but separability for the followers’
objective is not ensured. The same paper [16] proves that for independent pessimistic
bilevel problems, a sequence of approximations where the followers may return an
e-optimal response instead of the exact optimum converges to the supremum of the
original pessimistic problem. An iterative solution scheme motivated by semi-infinite
programming techniques is proposed for solving the approximate problem. Yet, the
problems investigated differ substantially from those in the current paper: arbitrary
non-convex constraints and objectives are allowed, but the typical problem size is only
one variable for the leader and one for the follower. The problem of finding the proper
balance between the optimistic and pessimistic bilevel cases is called the strong-weak
bilevel problem, and it is investigated, e.g., in [17]. An algorithm for constructing sta-
ble solutions of linear-linear bilevel problems, also leading to a trade-off between the
optimistic and the pessimistic solutions, is introduced in [18].

A relevant source of decision uncertainty can be the inability of the follower to
compute an exact optimal response, and accordingly, it may settle for a satisfactory,
g-optimal solution. This phenomenon is known as lower-level near-optimality. Near-
optimal robust bilevel optimization problems were investigated in [19], where neces-
sary conditions for the existence of bilevel-feasible solutions are established, and a
solution approach based on reformulation to a single-level problem is proposed for the
case of convex lower level. In [20], it is shown that, given appropriate conditions, the
near-optimal robust multilevel problem remains in the same complexity class as the
deterministic variant. The paper [21] calls attention to the practical computational
challenge that for problems with non-convex lower levels, where only e-feasibility can
be expected for the non-linear constraints, the resulting e-feasible solution may be
arbitrarily far from the exact optimal solution.

Another possible approach to tackling the limited computational capabilities of the
follower is assuming that it chooses its solution strategies from a finite set of methods,
known to the leader, which includes heuristics and approximation techniques [22].
After providing generic definitions, the approach is elaborated for the bilevel knapsack
problem and heuristics that work with a fixed preference order of the items.

Furthermore, decision uncertainty may stem from the followers’ inability to observe
the leader’s decision precisely, which in turn results in an uncertainty for the leader
regarding the follower’s response. Bilinear bilevel problems with limited observabil-
ity are considered in [23], where the leader must prepare for the follower response to



any perceived leader action in a polyhedral neighborhood of the true action. A solu-
tion method based on reformulation to a single-level problem is proposed, and it is
shown that the robust bilevel problem with limited observability belongs to the same
complexity class as the original, deterministic bilevel problem.

2.4. Applications of robust bilevel optimization

The aforementioned review [1] emphasizes that, despite the numerous applications of
bilevel optimization under uncertainty in the literature, the vast majority of these
consider a stochastic setting with known, discrete probability distributions, which
allows generating the deterministic equivalent directly. Below, we focus solely on the
scarce applications of the robust bilevel approach.

Applications to energy management include [24], where a I-robust bilevel approach
is taken to compute the optimal bidding strategy of a generator, with the lower
level standing for a transmission-constrained economic dispatch problem. Uncertain-
ties arise in the lower level due to rival offers and market demand. The robust bilevel
problem is solved by transforming it into a single-level mixed-integer linear program
(MILP). EV charging station design is formulated as a robust bilevel problem in [4].
The lower level captures the charging decisions of the EV owners, which is affected
by multiple sources of uncertainty, including electricity prices and availability, as well
as traffic. Again, the bilevel problem is reformulated into a single-level one, solved in
turn by a column-and-constraint generation method.

Network interdiction problems are particularly relevant for security applications.
In such applications, information asymmetry is inherent, and therefore, robust bilevel
approaches are of interest. A I'-robust bilevel optimization approach is presented to
the problem of allocating defense budget to potential targets in [3]. The source of
uncertainty is the follower’s (attacker’s) valuation of the targets, which is unknown
to the leader. In [25], a maximum flow interdiction problem is investigated subject
to uncertainties related to arc capacities and the resource consumption of arc inter-
diction, and the performance of several heuristic solution approaches are analyzed.
A robust bilevel approach to shortest path network interdiction is introduced in [26],
with uncertainties in the leader’s arc costs. The problem is solved by reformulating it
into a single-level MILP with a second-order cone constraint. In [2], a robust bilevel
approach is proposed to hazmat transportation network design, i.e., the problem of
selecting arcs from a given network where hazmat transportation should be inter-
dicted to minimize environmental risks. Uncertainty stems from limited knowledge
about accident probability. The bilevel model is transformed into a single-level MILP.
Further approaches to hazmat network design with uncertainty on arc cost in the fol-
lowers’ problem include [27,28]. A detailed review of network interdiction models and
applications is given in [29].

2.5. Positioning of the paper

According to the above classification scheme, the model investigated in this paper is a
robust bilevel optimization problem with polyhedral data uncertainty in the objective
function of the wait-and-see followers. The model also adopts the pessimistic bilevel
assumption to hedge against a potentially unfavorable choice of the follower from the
set of multiple optimal responses for a given realization of the uncertainty.

Strongly related contributions have been published recently, which shows the in-



creasing interest towards similar robust bilevel approaches. These include a formal
analysis of computational complexity in [11], yet, without arriving at a solution
method; as well as algorithms for specific problems, such as the continuous bilevel
knapsack problem in [10]. However, to the best of our knowledge, the present paper is
the first to propose an efficient solution method for RBOP as defined above.

3. Preliminaries

In this section, we establish some fundamental properties of RBOP.

Observation 3.1. Since Y is a polytope, the followers’ sub-problem (4) admits a finite
mazximum for any fired (z,u) € X x U. Likewise, since both X and Y are polytopes,
the overall RBOP (1)-(3) always has a finite supremum.

Proposition 3.2. For any (z,u) € X x U, Q(z,u) is a non-empty face of Y.

Proof. Since Y is a non-empty polytope by assumption, for any fixed x and u the
linear program (4) admits an optimal solution, and the optimal solutions constitute a
face of Y. ]

Corollary 3.3. For any (z,u) € X x U, min{f(x,y) | y € Q(z,u)} is attained by a
vertex of Y.

Let Y = {y* : ¢ € [L]} denote the set of vertices of Y. For any y € Y, let P(y)
consist of the pairs (x,u) € X x U for which y is an optimal response of the followers
to (z,u), ie., y € Qz,u).

Proposition 3.4. P(y) is a polyhedron for any y € Y.

Proof. Observe that any fixed y € Y is optimal for some (z,u) € X x U if and only
if (x,u) satisfies the constraints

(w—2)Ty > (u—a)"y", Le]l]
rze X, uel.

Clearly, this is a linear system, and the statement follows. O

For non-empty P(y) we define the projection of P(y) to the x variables, that is, let
Proj,(P(y)) = {x € X | Ju € U such that (z,u) € P(y)}. Since the projection of a
polyhedron to a linear subspace is a polyhedron, we have

Proposition 3.5. Proj,(P(y)) is a polyhedron for anyy € Y.

Define XP!(y) = Proj,(P(y)) for any y € Y. Note that X°*(y) may be empty.
Furthermore, distinct y and ¢’ in Y may be optimal for the same xz € X, that is,
x € XP(y) N XP(y').

Proposition 3.6. Suppose X has a non-empty relative interior. Then, for any e > 0,
there exists an e-optimal robust bilevel feasible solution (x',y',u') such that =’ is in the
relative interior of X.

The proof of the proposition is presented in Appendix A.



In the following definition, we assume that U is defined by a system of linear in-
equalities of the form au < ag, and equations are modelled by two inequalities, i.e.,
oau<ap and —a”u < —og .

Definition 3.7. For a given constant § > 0, let Us be the polytope obtained by
replacing the right-hand-side by g + d|ag| + J of each defining inequality au < ag of
U.

It follows that Uy is full-dimensional, even if U is not.

Proposition 3.8. For any given € > 0, there exists § > 0 such that the bilevel problem
over the extended uncertainty set Us admits a solution of value at least z* —e(|2*|+1).

Proof. First, consider any robust bilevel feasible and e-optimal solution (z,y, u) that
incurs a leader’s objective function value of at least z* — e(|z*| 4+ 1) over the original
uncertainty set U. By Corollary 3.3, the worst-case response y € Y for x is a vertex
of Y. Observe that the set of vertices Y of ¥ can be partitioned into two disjoint
subsets: Y;(z) consisting of the possible responses to z, i.e., Yi(z) = {y* € Y | Ju €
U, y' € Q(z,u)}; and Ya(z) those which are not possible follower responses for z, i.e.,
Yo(z) = {yt € Y | Vu € U, y' & Q(x,u)}. Clearly, for each y* € Y, y* € Yi(z) if and
only if & € Proj,(P(y)), otherwise y* € Ya(x), and = ¢ Proj,(P(y")).

Now, for each y¢ € Yg(a:), we pick a small §; > 0 and determine the polytope
Us,. Finally, we define P(;e( ) € X x Us, analogously to P(y) using the extended set
Us,. Since P(y*) C PL;[( %), and polytopes are closed sets, there exists §, > 0 such
that o ¢ Proj.(P;,(y")). Let 6min = min v, ) 6. It follows that for all yt e Yo(z),

z ¢ Proju(Fs,,, (yé))
Finally, for 4 € Yi(z), P(y*) C P5.. (y"), and thus & € Proj.(Ps.. (4')). Hence,
for 6 = dmin, Us will do. O

Having made all necessary definitions and established fundamental properties, the
robust bilevel problem will be investigated over three different uncertainty sets:

e The original problem over the polyhedral uncertainty set U given in the input.
Let z* denote its supremum.

o Its extended-uncertainty variant over the polyhedron Us D U, where § is defined
according to Proposition 3.8. Its supremum will be denoted by z°.

e A discrete-uncertainty variant over different, discrete uncertainty sets UP C Us.
This discrete-uncertainty variant is solved according to the optimistic bilevel
assumption, and its optimum is denoted by 2P

Proposition 3.9. Assume that the robust bilevel problem (1)-(4), solved over uncer-
tainty sets Uy and Uz, admits finite suprema z1 and zs, respectively. If Uy C Us, then
Z1 > 29.

Proof. Easily follows from the definitions. O

Corollary 3.10. For any e > 0, there exists § > 0 such that z*, 2°, and 2P as defined
above, satisfy z* > 20 > 2* — &(|2*| + 1) from Propositions 3.9 and 3.8, and zP” > 2°
from Proposition 3.9, and consequently, zP > z* — e(|z*| + 1) by transitivity.



4. Generic solution method

4.1. Definition of the algorithm

This section gives an overview of the algorithm for solving RBOP as defined in (1)-(4).
The algorithm addresses finding a feasible solution that approaches the supremum
arbitrarily well. For this purpose, it takes as input parameter §, which defines the
extended uncertainty set Us as presented in Section 3, and in turn controls the solution
quality and the convergence rate of the algorithm. The algorithm is based on solving
the discrete-uncertainty variant of the problem over uncertainty set U, where UP
is built up iteratively, in such a way that UP C Us. The solution of the discrete-
uncertainty variant yields a leader’s decision & whose performance can be evaluated on
the original uncertainty set U. The outcome of that test either proves that a sufficiently
good solution is found, in which case the algorithm terminates; or it gives guidance
on how UP should be extended in future iterations. This idea can be elaborated into
an algorithm as follows. In the mathematical programs solved in different steps of the
algorithm, the decision variables are highlighted with bold font. A detailed illustration
of each step on the specific demand response management problem is presented later
in Section 5.

(1) Initialize UP := 0, fpest := —00, foound := 00, and iter := 1. Compute initial
tariff ' by solving the high-point relaxation

max f(x,y) subject tox € X, y €Y

if this is efficiently solvable for the specific problem, or take an arbitrary z! € X.
Go to Step 3.

(2) Solve the discrete-uncertainty variant of the robust bilevel problem over uncer-
tainty set UP = {u!,... u®}:

Maximize z (5)
subject to
z < f(x,y"), ke [K] (6)
xeX (7)
v eQx,u®),  kelK] (8)

Here, inequalities (6) state that z is the worst-case leader’s objective value
achieved by tariff  over the discrete uncertainty values u*. Constraint (7) ex-
presses that x is feasible for the leader. Finally, constraint (8) states that y*
is an optimal follower response to (z,u*). Similarly to the common method for
transforming deterministic linear bilevel problems into single-level MILPs [30],
problem (5)-(8) can be reformulated into a MILP as follows. Constraint (6) con-
tains the bilinear term z'y in f(x,y) = (¢ + )Ty, which can be substituted
out by exploiting the equality of the primal and dual objectives in the followers’
linear problem. In (7), X is a polyhedron, and therefore, this constraint can be
formulated directly via a set of linear inequalities. Finally, constraint (8) can
be converted into linear inequalities by exploiting the KKT conditions for the
followers’ linear problem, and linearizing the complementarity constraints by in-



troducing additional binary variables. With this, the reformulation of (5)-(8) into
a single-level MILP is complete. The reformulation is illustrated on the specific
application in Section 5.3.2.
The solution of this problem defines tariff z%%¢" and solution value z*¢". Update
fbound = zier If fbest > fbound then return (xbestu Ybest Ubest)-
(3) Compute the followers’ worst-case response to tariff z%*“" over the original un-
certainty set U.

iter

Minimize f(z"",y) 9)

subject to
uelU (10)
y € Q(z"" u). (11)

Observe that finding the worst-case response to the fixed tariff 2" requires

minimizing the same objective (9) that is originally mazimized in the RBOP.
Like above, constraint (10) stating that v must belong to the polyhedral set U
can be encoded into a set of linear inequalities; whereas line (11) expressing that
y is an optimal follower response to (z“", u) can be reformulated into linear
inequalities with additional binary variables. Therefore, problem (9)-(11) can be
transformed into a MILP.

The solution of the MILP defines 4" and u. If fhest < f(2'7, 5", then

update fbest = f(l,iter’yiter)’ Thest = xiter’ Ybest = yit” and Upest = U. If

fbest > fbound then return (xbesta Ybest ubest)'

(4) Compute the so-called characteristic utility u***" for the given tariff x and
worst-case response y*¢" i.e., the utility value that yields y™¢" as the followers’
response to (2, u®®") for every tariff 2/ in the largest possible A-environment of
the fixed tariff 2"

iter

Maximize A (12)

subject to
u € Us (13)
(u _ xiter)T(yiter _ yé) > A, Vyé e N(yiter)' (14)

The objective (12) is maximizing the characteristic radius of the environ-
ment of x®" where 3" is the unique response to every (z/,u). By con-
straint (13), the characteristic utility u must belong to the extended uncer-
tainty set Us. Inequality (14) states that the given response y*°" yields a fol-
lowers’ objective at least A higher than any alternative response y¢, where
N(y'ter) .= {y* € Y : y'is a neighbor of ¥ in Y'} denotes the set of neigh-
boring vertices of y™¢" in Y. Add the resulting u®¢" to UP.

(5) iter :=iter + 1. Go to Step 2.

Formal statements about the convergence properties of the algorithm are made and
proven in Section 4.3.
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4.2. Graphical illustration

This section provides a graphical illustration to the above formal description. For each
y €Y, P(Y) is a convex polyhedron in X x U. Observe that the followers’ objective
is invariant to modifications (z/,u") = (z +v,u+v), where v is any vector of the same
dimension as x and u. Hence, P(y) is an eztrusion of a polyhedron X’ C X along the
diagonal directions of the X x U space, as shown for one-dimensional X and U spaces
in Figure 1. The polyhedra are limited further by constraints defining X (horizontal,
lower and upper sides in Figure 1) and those defining U (vertical, left and right sides
in Figure 1).

Polyhedra P(y), y € Y define a disjoint partitioning of the X x U space. If (xz,u) is
an internal point of P(y), then for tariff = and utility u, the unique optimal followers’
response is y. On the other hand, if point (z, u) is located on the boundaries of multiple
polyhedra P(y'), P(y?), ..., P(y™), then any of the responses y', y2, ..., 4™ is an optimal
followers’ response, and different optimal responses may yield different profits for the
leader. This phenomenon, similar to the optimistic versus pessimistic cases in the
deterministic problem, brings substantial additional difficulty when solving the robust
bilevel problem.

Us
]
U
]

..."..______...............

\J

Figure 1. Visualization of the algorithm: solution of the discrete-uncertainty variant over UP = {u®, u?}.

In the example of Figure 1, after the completion of the second iteration of the
algorithm, the discrete uncertainty set contains two elements, U” = {u!,u?}. Then,
in the third iteration, the discrete-uncertainty variant is solved over this set, which
results in tariff 3. Since 22 is the tariff that maximizes the leader’s profit, it is located
at an intersection of a vertical line corresponding to u* (u! in the current example)
and a boundary of some polyhedra P(y*) (P(y') and P(y?) in the example).

The horizontal line corresponding to 22 intersects three polyhedra, P(y'), P(y?),
and P(y?), which means that the followers may return a response of y', 32, and 33,
depending on the actual value of the uncertain utility u. On the other hand, the
followers will never return y* as a response to z>.

Now, let us have a closer look at the solution of the discrete-uncertainty variant over
UP = {u',u?}. This solution correctly determines 3> as the only possible followers’
response to (z3,u?). At the same time, for (23, u'), the two possible responses, y' and

y?, yield different profits for the leader, and due to the implicit optimistic assumption,
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the discrete-uncertainty variant accounts for the most favorable response. Assume this
favorable response is y!, i.e., f(x3,y') > f(23,4?). The possible response y? is omitted
by the discrete-uncertainty variant.

At this point, two cases must be distinguished. If f(z3,y?) > f(23,%?), then the
algorithm finds 3® as a worst-case response to x® over the original uncertainty set
U. Then, the robust solution found and the bound given by the discrete-uncertainty
variant coincide, which means that the algorithm terminates with the optimal solution

3.

Us
]
U
]

....".._._.__...............

\J

u? u

Figure 2. Visualization of the algorithm: if y2 is the worst-case response to 3, then the characteristic utility
for (x3,y?), denoted by u3, must be added to UP.

Alternatively, in the unlucky case that f(z3,y?) < f(x3,%?), the worst-case response
to tariff 3 involves y2, a response omitted earlier by the discrete-uncertainty variant.
Then, to fix this shortcoming, the algorithm computes the characteristic utility for
tariff 22 and response y?, which corresponds to the mid-point of the intersection of
the horizontal line 22 and polyhedron P(y?), denoted by u? in Figure 2. This is added
to collection UP, and the algorithm continues with UP = {ul,u?, w3} in the next
iteration. This ensures that the discrete-uncertainty variant accounts for response y?
in the largest possible environment of tariff 3.

An important special case is displayed via another example in Figure 3, where the
worst-case response y! is taken for a small range of uncertainty values near a vertex of
P(y') on the boundary of uncertainty set U. This range corresponds to the short red
line in the left of Figure 3. The characteristic utility in each subsequent iteration is
defined by the midpoint of this short red line. In such a case, subsequent iterations in-
volve slightly modified tariffs (moving downwards in the diagram) and slightly shifted
characteristic utilities (moving leftwards). If characteristic utilities were computed over
the original uncertainty set U, then this would result in infinite iterations converging
to the nearby vertex of P(y). Yet, by computing the characteristic utilities over the
extended uncertainty set Uy, the algorithm arrives in finitely many steps at a character-
istic utility u® € Us\ U. Then, in the next iteration, two cases might occur. Typically,
solving the discrete-uncertainty variant will result in a slightly modified tariff 2% that
just avoids y! as a worst-case response (see Figure 4); the discrete-uncertainty solution
and the worst-case response coincide, which means that tariff # is a close-to-optimal
solution. Alternatively, search may continue in completely different regions of the tariff
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space.

Figure 3. Visualization of the algorithm: an important special case where the worst-case response y! is taken
for a small range of uncertainty values, near a vertex of P(y') on the boundary of uncertainty set U.

Us
I

v

w? ul u? u

Figure 4. Visualization of the algorithm: computing characteristic utilities over the extended uncertainty set
Us ensures that iterations arrive at a characteristic utility u® € U \ U, and subsequently, to a tariff z¢ that
just avoids the unfavorable response y'.

4.3. Key properties

In this section, key properties of the proposed algorithm are formally proven, including
soundness and termination in finitely many steps.

Proposition 4.1. The solution (ZTpest, Ypest, Ubest) Teturned by the algorithm is robust
bilevel feasible. Moreover, for any € > 0, there exists § > 0 such that (Tpest, Yest, Ubest)
s an e-optimal solution to the robust bilevel problem.

Proof. (Tpest; Yvests Ubest) 1S robust bilevel feasible, because e is derived as a solu-
tion of an optimization problem in Step 1 or Step 2 that involves constraint x € X, and
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Ybests Ubest are obtained in Step 3 as the worst-case response. The leader’s objective
function value on this solution is fhes computed in Step 3.

For a fixed £ > 0, there exists § > 0 such that z° > 2z* —¢(|2*|+1) by Corollary 3.10.
With such a parameter d, (Zpest, Ybests Ubest) 1S £-optimal, because

fbest > fbound > 26 2 Z* = 2’5("2*| + 1)7

where the first inequality is the termination condition of the algorithm; the second is
implied by the fact that fyound is the objective value of the optimistic problem over
the discrete uncertainty set UP C Us, and the third is ensured by the choice of §. [

iter

Next we prove that in Step 4, when finding a characteristic utility u"¢", it suffices

to use only the neighbors of y/¢".

Proposition 4.2. Let v be an optimal solution of (12)-(14) of optimum value
Aiter. Then (uiter _ xiter)(yiter _ yf) > Aiter fOT’ all yﬂ c f/

Proof. To simplify notation, let w := uiter — giter . Consider the cone with apex ylter
and generated by the rays (y**" —y) for neighboring vertex y € N (y*°") of 3" Since
this cone encompasses Y, each vertex y® of Y can be expressed as linear combination
of the vectors (y"*" —y), y € N(y"®"). That is, there exist coefficients A\; > 0 such

yiter _ yé _ Z )‘j <yite7“ _ yj).
yj GN(yite'r)
Multiplying both sides by vector w from the left, we obtain
w(yiter - yé) — Z )\jw(yiter - yj) > Z )\inter > Alter
y/EN(yiter) y/EN(yiter)
U

Termination in finitely many steps is ensured by adding a characteristic utility
in each iteration that guarantees sufficient progress in each iteration of the search
procedure. Recall the set Us and Proposition 3.8.

Proposition 4.3. For every instance of the robust bilevel problem, there exists a
constant Awyin > 0 such that problem (12)-(14) admits an optimal solution with A >
Amin. Moreover, Amin is common over all iterations of the algorithm.

Proof. We show that for each vertex y* of Y, and A, > 0, there is a vector u such
that for any (z,u) € P(y"),

(utu’ =)y —y7) = Ay, Vj € [L]. (15)

Since Y is a polyhedron, there exists a hyperplane containing y¢ with normal vector
u’ such that

u(y' — ) > Ay, Vi € [L).
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This proves (15). For each ¢ € [L], we choose Ay > 0 small enough such that there
exists u’ satisfying (15) and also u + u* € Uy for any (z,u) € P(y’), where we exploit
that Uy is full-dimensional. Finally, we define Apyin := minge(z) Ay, and the statement
is proved. O

Assume that in Step 4 of iteration iter of the algorithm, characteristic utility "

is computed for tariff z?**" and corresponding worst-case response y*¢". Recall that
N (y"") denotes the neighboring vertices of 3% in Y. Then, let us denote by ¢ :=
(ufter — gter)yiter and @f = (u'®" — 2 )y’ the followers’ objective function values
corresponding to responses y**" and y* € N(y™¢"), respectively. By constraint (14)
and Proposition 4.3 we have for all y* € N(y#"),

(@ o @Z) — (uiter o xiter)yiteT o (uiter _ witeT)yE > A > Ay > 0. (16)

Since Y is a polytope, there exist upper bounds g; such that |y;| < g; for each y € Y
and all coordinates . In the sequel, let || - ||max denote the maximum norm (also called
the infinity norm or L® norm), i.e., the largest absolute value of the components of a
vector.

Proposition 4.4. For x'" u"°" and A as defined above, assume ' is a tariff such

that ||2' — 2" || nax < 0 = A/(2;5:). Then, y"*" is also an optimal follower response
for 2’ and u™¢". Moreover, if |2’ — x||max < 0, then y™*°" is the unique optimal response

of the followers.

Proof. For any given i, a change of 6 in the single tariff component x; incurs a
change of at most #; in both of the followers’ objective function values ¢ and f. If
all coefficients are allowed to change at the same time, then both of ¢ and ¢ can
change by at most 6, 7; = %. Accordingly, for the new tariff 2’ it holds that

(uiter o x/)yiter > (uiter o xiter)yiter _ % > (uiter _ xiter)yf + % > (uiter o x/)yf.
The first and the third inequalities follow from the limited change of the followers’
objective upon the variation of 2?*"| whereas the second inequality is ensured by (16).
This means that y**" is also optimal for 2’ and u*°".

The second part of the proposition, corresponding to strict inequality
|2" — x||max < O follows analogously. O

Theorem 4.5. For any given € > 0, there exists 6 > 0 such that the proposed algo-
rithm terminates in finitely many steps and outputs an e-optimal solution.

iter

Proof. By Corollary 3.3, the worst-case response ¥y computed in Step 3 of the
algorithm is one of the finitely many vertices of Y. Consequently, it suffices to show
that each gy € Y can be received as a worst-case response in finitely many iterations.

An indirect proof is given, assuming that § occurs as worst-case response infinitely
many times over iterations iter = 1,2, .... We investigate two separate cases according
to whether there exist two iterations ¢terq and itery such that iter; < itero, yite“ =

iters __ 5 iter iter o Ay
yiter2 = g and ||z — 2772 || oy < Omin = SRR

In case such iterations iter; and iters exist, then let u®¢™ denote the characteristic
utility computed for tariff z%¢"* and worst-case response § in Step 4 of the algorithm.
Then, in iteration iters, we have that ¢ is the unique optimal response for z***"2 and
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u'e™ as well by Proposition 4.4. This implies that in iteration iters, Step 2, the value
of the discrete-uncertainty solution fyound matches the value of the worst-case response
over the original uncertainty set, which is fpest, and the algorithm terminates. This
contradicts our assumption.

Alternatively, it might happen that the tariff values differ substantially, i.e.,
|[aiters — giterz|| o > Omin, in any two iterations such that y*¢" = y¥¢™2 = §. However,
the existence of infinitely many tariff values whose distance is greater than the pre-
defined positive constant contradicts the assumption that X is bounded. Hence, the
assumption of infinitely many iterations with the same g results in a contradiction.
Since the worst-case response y*¢" in Step 3 is always a vertex of Y, and Y has a finite
number of vertices, the algorithm terminates in finitely many steps.

Finally, by Proposition 4.1, the solution returned by the algorithm is e-optimal. [J

4.4. Determining the solution quality

Bounding the error of the solution requires calculating an upper bound on the supre-
mum z*. Observe that fioung computed by the algorithm is inappropriate for this
purpose, since it is calculated over the discrete uncertainty set U, which may contain
uncertainty vectors u¥ € Us\ U, i.e., which are outside the original uncertainty set U.

To compute a correct upper bound, we depart from the discrete uncertainty set U,
project all the vectors u* € UP back to U, and then solve the discrete-uncertainty
variant (5)-(8) over the projections. Since a finite subset of U is used for solving the
optimistic relaxation of RBOP, this leads to an upper bound on z* that we denote by

UB. Then, ?857{‘;‘1‘“ is the relative error of the best solution.

It remains to sketch how to project the vectors u* € UP \ U back to U. Let @* € U
be a closest vector to u* in the L' norm. Then, @* is an optimal solution of the
optimization problem

s.t.

uf —af <wv, Vi
af —uf <wv, Vi
i eU.

Note that if u* € U, then the optimum value is 0, and @* = u*. One may also use the
L? norm, which yields a mathematical program with a convex quadratic, separable
objective function and the same linear constraints as above.

5. Application to Demand Response Management

5.1. Problem Definition

The proposed generic solution method is illustrated on a specific problem involving
demand response management in smart electricity grids. The robust formulation ex-
tends the earlier deterministic Simple Multi-period Energy Tariff Optimization Problem
(SMETOP) [31] with uncertainty as follows.
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The leader in the bilevel problem is an electricity retailer who addresses setting
a time-of-use electricity tariff for its M consumers. The consumers, who act as M
independent followers in the bilevel problem, respond to the electricity tariff by deter-
mining their consumption over time in order to maximize their utilities and minimize
their electricity costs.

The leader purchases electricity at the wholesale market at given unit prices p; over
the finite time horizon t = 1,...,7T. Then, it must set consumer prices x; subject to
regulations agreed a priori expressed in the form arbitrary linear inequalities, which
define the polyhedral set X. Each follower i responds to this tariff independently of
other followers by determining its consumption y;; in such a way that Zthl Zf\i 1 (uig —
x4)yi¢ 18 maximized, which corresponds to maximizing utility and minimizing the cost
of electricity. The per period consumption y;; must respect the lower bound y;; and

upper bound g, and for each i € [M], total consumption Z?:l y;¢+ must fall between
the lower and upper bounds d; and d;. The lower and upper bounds, Yit, Yit» di, and
d;, are all non-negative for all i € [M] and t € [T).

Unlike in the deterministic case, the leader is only partially aware of the followers’
parameters. Namely, the leader knows the bounds y;, ¥, d; and Ji, but the actual
value of the followers’ perceived utilities u; is unknown to the leader. Instead, the
ensemble of all utility values comes from a given polyhedral uncertainty set U. This also
allows that the utilities of different followers can be interrelated. Then, the objective of
the leader is maximizing its worst-case profit, 2?21 Zf‘i 1 (& — pi)yit, over all possible
realizations corresponding to different utility values wu;. This robust bilevel problem
can be formulated as follows:

sup z (17)
reX
T
i - it Q ) >z, 1
I&lg{;il (xe —pe)yir + y € Qx u)} >z (18)

where

X={zeRT : rjxgrg,jzl,...,ma},

U= {ueRM*T . vjugvg,jzl,...,mb},

and Q(z,u) is the set of optimal solutions of the parametric problem

t=1 i=1
T

szZyz'tS i, 1€ [M] (20)
=1

vit <yit <¥it, i€[M], telll (21)

Let Y be the set of feasible solutions of the linear system (20)-(21).

The above demand response management problem fits into the generic robust bilevel
programming framework with electricity tariff x; as the leader’s decision variables, con-
sumption y;; as the followers’ response, and the consumers’ utility u;; as the uncertain
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Table 2. Sample instance for the demand
response management problem.

Parameter Value
M 1
T 3
P (1, 1, 100)
X [0,10)3
nn=y2=y3 1
y1=y2=ys O
d=d 1
U 0<wui,uz <10
uz =6
u1 +uz > 10

Vertices of U u? = (10,0, 6)
uB = (0,10,6)
u® = (10,10, 6)

parameters. A minor mismatch comes from the fact that the leader applies the same
tariff x; to all consumers, whereas the generic framework assumes that the leader’s
variables x have the same number of dimensions as the utility values u;;. The latter
would directly correspond to applying consumer-specific tariff variables x;; and im-
posing equality constraints z;; = @, Vi, ,t, which can be handled smoothly by the
proposed algorithm. Yet, with a slight abuse of the notation, this paper uses the simple
formulation with tariff variables x;.

5.2. Sample instance

The robust bilevel demand response management problem is illustrated on the small
sample instance shown in Table 2, with a single follower and three time periods. Since
there is a single follower, the follower index is omitted from the notation. The feasible
region for the tariff is the box X = [0, 10]3. The consumer must schedule a single unit
of load into any of the three periods. The uncertainty set U for the follower’s utilities
is the convex hull of the points u4, u?, and «® as displayed in the table. For the sake
of simplicity, the third coordinate of the vector is fixed to us = 6. We refer to the
midpoint of the section uAuB as uMid = v 412 — (5 5 6).

Notice that time periods 1 and 2 are favorable for the leader, since it can realize
positive profit by purchasing electricity at a low wholesale price. In contrast, any
consumption in the unfavorable period 3 inevitably results in a loss of profit for the
leader. Therefore, the leader can maximize its profit by (1) motivating the follower to
schedule its load to one of first two time periods, and by (2) increasing the tariff as
much as it is allowed by the former requirement.

In case the leader decided for the highest possible tariff, ! = (10,10, 10), then for
all vertices of U, the follower would schedule its load into the periods favorable for
the leader (periods 1 or 2), resulting in a profit of 10 — 1 = 9. On the other hand,
for utility vector u™?, the same tariff would result in scheduling the entire load into
the last time period with a significant loss, 10 — 100 = —90. The latter is the leader’s
objective value for tariff .

Obviously, the leader must decrease the tariff in the favorable periods to attract
consumption into those periods. For this purpose, the leader can apply tariff 22 =
(9 — £,9 — ,10), which ensures that either u; — z1 > ug — x3 or ug — x9 > ug — x3
holds for any u € U. Accordingly, the entire load will be scheduled into the favorable
periods 1 or 2, resulting in a profit of 9 —e — 1 = 8 — &. The latter tariff 2 is also the
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g-optimal solution for the sample problem instance.

Finally, observe that the supremum, corresponding to tariff (9,9, 10) and profit value
8, cannot be attained. The proposed algorithm finds the above e-optimal solution in
two iterations, where the first iteration checks the initial tariff 2! = (10,10, 10) and
leads to the characteristic utility u! = (4—6,4—6,6+0) € Us, and the second iteration
leads directly to 22 = (9 — ¢,9 — ¢, 10).

This sample instance also illustrates that RBOP over a polyhedral uncertainty set U
differs essentially from the similar problem over the discrete uncertainty set involving
only the vertices of U. Hence, although it may sound like a promising idea to look for
the optimal solution by considering only the vertices of U, this idea may easily lead
to a sub-optimal solution for the original RBOP.

5.3. Application of the Generic Algorithm

This section presents the application of the generic algorithm outlined in Section 4 to
solve the robust bilevel demand response management problem. This requires defin-
ing the MILP models corresponding to the abstract problems solved in each step of
the algorithm, which is presented in separate subsections below. Like above, decision
variables are highlighted with bold font.

5.8.1. Step 1: Initialization

Initial tariff values x are set heuristically by maximizing ), x; subject to x € X.

5.83.2. Step 2: Discrete-uncertainty variant

In the second step of the algorithm, the discrete-uncertainty variant with uncertainty
set uF € UP| k € [K] is solved. Recall that separate consumption vectors y*, k € [K]
belong to each utility vector u*, and the lowest profit achieved over the different utility
vectors defines the objective value of the solution.

The discrete-uncertainty variant can be converted into a single-level MILP similarly
to the well-known technique for the deterministic variant, by using the complemen-
tary slackness conditions for the followers’ sub-problem. For this purpose, let us first
formalize the dual of the followers’ sub-problem for a given scenario k € [K| and given
follower i € [M]:

T
Minimize Jiozi-H - diosz + Z(gitﬁi’“j — Yit Z]f;) (22)
t=1

subject to

k k— k k—
ai+ —ap Bit+ — P = “i‘gt -z, te|[T]
ok~ ol gl gkt >, te[T].

At S N Y A

k+
K3
constraint (20), respectively, whereas ﬂffr and Bﬁ_ for the lower and upper bounds in
constraint (21) for each scenario k € [K].

This formulation uses dual variables «; ™ and ozf_ for the lower and upper bounds in
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The bilinear terms Zle 2y in the leader’s objective function can be reformulated
by exploiting strong duality for the followers’ linear sub-problem, which implies that
the followers’ primal and dual objectives are equal:

T
Z uzt_xt Yit = dak+ dak_+z yltﬁzt Qltﬁﬁ_) Vi € [M]vke [K]
t=1

By rearranging the equation, we get:

T

T
> xiyi = Y (uftyft — BT+ z_/z-tﬁi’i‘) — did" £ diaf Vi€ M),k € [K].
t=1

t=1

This transformation takes us to the following MILP formulation of the discrete-
uncertainty variant:

Maximize z (23)
subject to
T m mo
2 <Y > (whyh =GB +yaBy —pyl) — Y _(diafT —diafT), ke [K] (24)
t=1 i=1 i=1
xeX (25)
T
0<oft Ldi—) yi >0, ie[M], ke |K] (26)
T
0<af” LY yh—di>0, i€ [M], k€ [K] (27)
t=1
0< BN L gu—yk >0, i€ [M], telT], k€ [K] (28)
0< B Lykh —yu>0, i€ [M], tel[T], ke [K] (29)
ot — ol gt gl =k %, i€ M), te [T, k€ [K]. (30)

In the MILP model, the objective (23) is maximizing the worst-case profit z, which
is determined by the minimum of the profits realized in the individual scenarios (24).
The core of the model is composed of leader’s constraints (25) and the complementary
slackness conditions for the followers’ sub-problem (26)-(30). Here, 0 < L L R >0
denotes that L > 0, R > 0, and either L = 0, or R = 0. In an actual implementation,
the corresponding constraints can be translated into indicator constraints or classical
big-M constraints. The optimal solution of this MILP defines tariff 2" in the given
iteration.
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5.3.8. Step 3: Worst-case followers’ response

The problem of finding a worst-case response y*¢" for the fixed tariff z*¢" can be
captured by the following MILP, again, by applying the KKT reformulation of the
followers’ sub-problem:

M
Minimize Z Z (2" — pt) ya (31)
t=1 i=1
subject to
ueU, (32)
T
0<of Ldi—) yu=>0, i € [M] (33)
t=1
T
0<a; LY yiu—di >0, i € [M] (34)
t=1
0< 8% L gin—yiu >0, i€ [M], telT) (35)
0<B; Lyi—uyi>0, i€ [M], te|T (36)
of —ai + B — B =uy — 2, i€ [M], te[T). (37)

The objective (31) is minimizing the leader’s profit. Constraint (32) states that the
corresponding utility u must belong to the original uncertainty set U, whereas (33)-
(37) encode the optimality conditions for the followers’ sub-problem. Variables y in
the optimal solution define 3",

5.8.4. Step 4: Characteristic utility

Upon receiving a worst-case followers’ response 3" for tariff 2/*" worse than what
was foreseen based on the solution of the discrete-uncertainty variant, we determine
the characteristic utility u™®" for (2", y"°") to be added to UP. Before explaining
how we find it, we characterize those vectors u such that y*¢" is an optimal follower

iter
response for (z"°" u).

Observation 5.1. If y is a vertex of Y, then for each i € [M] one of the following
cases holds:

a) d; < Zle yir < d; and for each t € [T): y; € {yit, it }-
b) Zle Yir € {d;,d;}, and for all but at most one t € [T, yir € {yit, Uir }-

Proposition 5.2. Given some vector u of appropriate dimensions. y**°" is an optimal

follower response for (x™¢" ) if and only if for each i € [M], u satisfies the following
conditions:

i) wy — T > g — a8 for allt # ' € T such that Yit < yﬁer N Yipr > y%/@r.

i) wip — " >0 for all t € [T such that yix <y A d; < Zle yiter,
i) i — 2" <0, for all t € [T such that ix > yitr A d; > ZZZI yiter,

Proof. The necessity of the conditions is obvious, so we turn to sufficiency. We will
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prove that no neighboring vertex y of y in Y has a smaller cost than y*¢" pro-

vided u satisfies the conditions of the statement. To this end, first we characterize the
neighboring vertices of y"*". We can reformulate (19)-(21) as follows:

M T
max Z Z(Uzt - Irt)Yz't

i=1 t=1

iter

T
ZYit_Si =0, i€ [M]
=1

di <s; <d;, iel[M]
Yit <yit <Yit, 1€[M], telT]

Observe that this linear program decomposes into M independent linear programs,
one for each ¢ € M. Let LP; denote

T
max Z(Uzt - ﬂﬁt)}’z't
t—1
T
ZYit —s;=0 (38)
=1
di <s; <d;

vit <yie < Yit, tel[T].

LP; consists of a single equation (38), and lower and upper bounds on the variables.
Therefore, in any basic solution, all but one variables are at lower or upper bounds,
and exactly one variable is in the basis. Consequently, if we express the vector yft” =
(yiter . t € [T]) as a basic solution of LP;, then either s;, or one of the y;; is basic,
and the rest of the variables are non-basic. Each neighbor of yft” can be obtained by
exchanging a basic and a nonbasic variable, or by swapping a variable from its lower
bound to its upper bound or vice versa. Hence, each neighbor of y*¢" in LP; can be

obtained by one of the following transformations:

i) Some yff” > y;t is decreased by a positive amount and a distinct yff,er < Yipr 18

increased by the same amount.
ii) Some y!f¢" > y;; is decreased by a positive amount.
iii) Some y4" < g is increased by a positive amount.

Observe that the conditions of the statement ensure that none of the above transfor-
mations may decrease the objective value of the solution, hence, the neighbors of ygt”
in LP; cannot have a smaller objective value than yft”. Finally, since each neighboring
vertex of ¥™¢" in Y can be obtained by one of the above transformations, the statement

follows. O

In the remainder of this section, we describe two alternative methods for finding
uiter‘

5.3.4.1. Method I. The first method is derived directly from the general method
of Section 4.3.

22



Maximize A (39)

subject to
u c U5 (40)
(Wi — 2" — wip + 2" ) min(yi — yir, G —yir) > A, i€ [M], t#¢ €[T):
it <Yk N T >y
(41)

(e — ") min (Yl — yar, Zy”” —di) > A, ie[M], tell]:

Yit <y“75€e7‘ A d <Zyzter
(42)

iter

— (ugy — ") min(g; — y2°", d; Zy”er > A, ie[M], tell]:

Ui > yzger A d > Zyzter.
(43)

The objective (39) is maximizing the slack A. The characteristic utility u must
belong to the extended uncertainty set Us (40). Then, inequalities (41)-(43) ensure the
proper slack for the different neighbors of 3¢ in Y. First, constraint (41) states this
requirement for neighbors of y***" received by moving min(yﬁ” — Yits Yivr — YiAeT) >0
load from period ¢ to period t’. Observe that this is the highest possible amount of
load that can be moved between the two periods. Similarly, inequality (42) bounds the
slack for neighbors obtained by decreasing the load in some period ¢ by the highest
possible amount, min(yf" —y;, ZZ Lyiter —d;) > 0. Finally, constraint (43) achieves
the same for neighbors of y¢"
maximum possible amount.

Observe that the left hand side of constraints (41)-(43) equals the difference of the
followers’ objectives in case of followers’ responses 4" and some y* € N(y*"), i.e.,
(u — 2T (yter — ), as defined for the generic method in constraint (14). Hence,
by Proposition 4.3, the optimal solution value of the LP (39)-(43) is always at least

Apmin for some universal Ay, > 0.

received by increasing the load in some period ¢ by the

5.3.4.2. Method II. In the following mathematical program, we seek a vector u
that satisfies the conditions of Proposition 5.2 with a positive slack 6. This ensures
that y*°" is an optimal follower response not only for (z**",u), but also for all ' € X
such that ||z" — 2% || nax < 0/2, see Proposition 5.4.

Maximize 6 (44)
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subject to

u € Us (45)

i — 2T > o — a0, i€ [M], t#Y €Ty <YL A G >yl (46)
T

w;; — it > 9, i€ M), te[T]: yu <y A d; < nyier (47)
=1

. . — T .

wy — aiter < -9, i€ M), teT): G >y A di> D gl (48)

T=1

The objective (44) maximizes the slack 6. By constraint (45), the characteristic utility
u must belong to the extended uncertainty set Us. Constraints (46)-(48) correspond
to the conditions of Proposition 5.2. Since all variables are continuous, and Uy is a
polytope, this model is an LP. The optimal solution defines the characteristic utility
u™e" that is added to the discrete uncertainty set UP.

Proposition 5.3. There exists a universal constant O, > 0 that depends only on 6
such that the optimum value of (44)-(48) is always at least Oy .

Proof. Let ,,, be the minimum distance between a boundary point of Us and a
boundary point of U. Since § > 0 by definition, i, > 0.

Let v € U the optimal uncertainty vector obtained when computing y*¢" in Step 3
of the algorithm. We define ' as follows:

: - T
Wit + Omin 1 yir <YL A di < 3o q ylen
/ o — ; < T .
Uy = S Uit = Omin I G > Y A di >0 yie”
Ut otherwise.
Since 3" is a vertex of Y, the first two cases in the definition of «’' cannot occur

simultaneously by Observation 5.1, so v’ is well-defined. Moreover, u’ € Us and satisfies
the constraints (46)-(48) for # = Omin. Therefore, the optimum value of (44)-(48) is
always at least Omin := Omin- O

The optimal solution u®" of (44)-(48) has the following property.

Proposition 5.4. For giter g iter and 0 as defined above, assume 2’ is a tariff such
that Hq:’ — 2| pax < 0/2. Then y"e" € Q(a/,u™®"). Moreover, if Hw’ — Z||max < 0/2,
then y"°" is the unique optimal response of the followers for (x', u™e").

Proof. Observe that z{'"—0/2 < x; < z{"*"+0/2 for all t € [T]. Then (46) implies that
ulter — x> uiler —af, for all t # t' € [T such that y/#*" > y;; (not at lower bound), and
yiter < g (not at upper bound). Moreover, by (47) and (48), uiter — z} > 6/2 if yiter

may be decreased, and ull" —x} < —0/2 if i may be increased. By Proposition 5.2,

y"°" is an optimal follower response for (z/, u®er). O

Finally, observe that the two LPs (39)-(43) and (44)-(48) share a common struc-
ture, and the only difference between them is the weight of the different neighbors
y* € N(y™°") in the definition of the characteristic radii A and 6. In Method I, inequal-
ities (41)-(43) are weighted by the difference of the corresponding follower objective
values, whereas Method II applies uniform weights in constraints (46)-(48). Yet, the
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underlying idea can be applied with arbitrary positive weights, and the efficiency of
different weight vectors should be investigated in computational experiments. More-
over, it is straightforward to combine different methods by adding more than one
characteristic utility in one iteration.

6. Computational Evaluation

6.1. Implementation details

The proposed algorithms were implemented in C++, using the Gurobi 9.5 commercial
MILP solver. All logical constraints, including (26)-(29) and (33)-(36) were imple-
mented as indicator constraints. The default algorithms of Gurobi were used, yet,
with custom parameter settings for improving numerical stability (see Section 6.4 for
details). Also, aggressive cut generation was applied (Cuts=3). All experiments were
run with a time limit of 600 seconds, on a personal computer with Intel i7 1.80 GHz
CPU and 16 GB RAM.

6.2. Problem Instances

Computational evaluation was carried out on a set of randomly generated problem in-
stances of the demand response management problem. T'wo different types of instances
were investigated: in so-called independent follower (IF) instances, the uncertainty sets
related to individual followers were independent, i.e., each inequality defining the un-
certainty set U contained nonzero coefficients for one follower only; in contrast, in
dependent follower (DF) instances, the uncertainty sets were interrelated. Instance
sizes were varied by selecting both the number of followers, M, and the number of
time period, T, from {5,10,15}. Five random instances were generated for each com-
bination of M and T, resulting in 90 instances altogether.

Wholesale prices p; were drawn from U[1,500], where UJa,b] denotes the discrete
uniform distribution over the integers in [a,b]. Set X is defined by lower and upper
bounds on each individual z; (two values were drawn from ¢/[0,1000], and then the
lower (higher) value was used as the lower bound z; (upper bound z;) on z;), and a
linear inequality of the form 3,y ri@¢ < ro, where ry, ¢ € [T'] was taken from 1[0, 10]
and rg from U[Zte[T] T4, Zte[T} 71T

For generating bounds on the load in individual periods, y;; and g, two random
values were drawn from [0, 1000], and then the lower (higher) value was used as the
lower bound y;; (upper bound ;). For bounding the total load of consumer i, two
random values were drawn from U[) ", yit, Y, Uit], and again, they were used as lower
bound d; and upper bound d;.

Similarly, random values were generated from /[0, 1000], and then the lower (higher)
value is used as the lower bound u;; (upper bound ;) on w;. Additional constraints
on U were generated depending on the type of the instance. Dependent follower (DF)
instances contained a single linear inequality of the form ZiE[M] Zte[T] Vi < g,
where v;; was taken from U0, 10] and vy from U[Zz‘e[M] Zte[T] Vitlit, Y ; 2y Vitlig]. In
contrast, independent follower (IF) instances included one separate constraint for each
individual follower, i.e., Vi : 37y vhu;y < vi, where v!, was taken from ¢[0, 10] and

v} from U (> iepn) 2otemy vlug, D ie[M] 2otelT] v!, ;). The problem instances and the
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corresponding results are publicly available in the GitHub repository of the project!.

The robust bilevel problems generated using the above method contain T leader
variables to encode the tariff and MT follower variables to capture the consumption,
i.e., 15 4 225 variables for the largest instances with M = 15 and T = 15. Within the
algorithm, the computational challenge lies in solving the discrete-uncertainty variant
(23)-(30). When uncertainty set UP consists of K discrete values, the corresponding
single-level MILP contains SMTK 4+ 2M K + T + 1 continuous and 2MTK + 2M K
binary variables, connected by SMTK + 6 M K + K + 1 constraints. For an instance
with (M, T) = (15,15) in the 10th iteration of the algorithm, this corresponds to 7066
continuous and 4800 binary variables with 12161 constraints.

6.3. Experimental Results

Two versions of the proposed algorithm were investigated and compared in the com-
putational experiments: Alg-I computed the characteristic utilities in Step 4 using
Method I (refer to Section 5.3.4.1); in contrast, Alg-II used Method II (described in
Section 5.3.4.2). All other components of the two algorithms were identical. Moreover,
to analyze the impact of the tolerance parameter § used for defining the extended
uncertainty set Us, both algorithms were run with § = 1072 and § = 1073, resulting
in four different runs on each problem instance.

The results are presented in Tables 3 and 4 for the two algorithms, respectively. Each
row in the tables contains aggregated results for a fixed value of parameter §, the 5
instances of a given type (DF or IF) and a given problem size, as indicated in columns
M and T. Column Terminated shows the number of instances out of 5 where the
solver terminated according to the stopping condition fpest = fbound Without hitting
the time limit. Then, subsequent columns display the average computation time, the
average number of iterations, as well as the average and maximum normalized gaps.
Normalized gaps are computed as (ﬁgjf:ﬁe’f”, where fpest is the objective value of the
best solution found and UB is the upper bound computed according to the technique
presented in Section 4.4.

As it can be seen from the tables, algorithm Alg-II clearly outperformed Alg-1I: it
terminated on more instances (117 vs. 151 terminations out of 180 runs) while taking
less computation time (237 s vs. 112 s on average) and less iterations (14.1 vs. 7.1), as
well as achieving lower average gaps (0.34% vs. 0.29%). This difference in performance
appears with both investigated values of parameter §. One possible explanation of
this phenomenon is that the uniform weighting of the neighbors when calculating
the characteristic radius in Method II leads to more robust performance, whereas the
presence of neighbors with very low weights in Method I may lead to slow convergence.

For the more efficient Alg-II, the average computation time was 112 s over all in-
stances, also taking into account the instances where the 600 s time limit was hit,
whereas it was 18.8 s for the instances where search terminated. This corresponds to
7.1 iterations on average, with 5.7 iterations in case of termination and 14.3 iterations
in case of timeout. Timeout occurred in 29 runs on large instances (12 with § = 1072
and 17 with § = 1073), including 70% of the runs with (M, T) = (15, 15).

The choice of parameter ¢ clearly impacts the behavior of the algorithm. With a
greater J, the algorithm converges to the supremum in greater steps, i.e., it terminates
quicker, but often further away from the supremum. That is, with § = 1072, the
algorithm terminated in 139 cases with an average gap of 0.41% over all instances.

Lhttps://github.com/akovacs-sztaki/Robust-bilevel-optimization
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Table 3. Experimental results with algorithm Alg-1.

1) Prob M T | Terminated Avg. time (s) Avg. iter Avg. gap Max. gap
1072 DF 5 5 5 5.8 8.6 0.04% 0.20%
10 5 25.0 8.6 0.59% 1.71%

15 4 185.3 18.6 0.36% 1.33%

10 5 4 120.5 13.0 0.06% 0.12%

10 1 502.3 36.2 0.62% 1.30%

15 2 375.8 19.0 0.35% 1.13%

15 5 3 243.0 10.2 0.09% 0.16%

10 4 164.1 14.4 0.30% 1.23%

15 0 600.0 13.4 0.64% 1.66%

IF 5 5 5 33.0 9.6 0.25% 0.58%
10 5 8.9 7.6 0.12% 0.34%

15 4 134.8 9.0 0.25% 0.58%

10 5 5 82.9 10.6 0.87% 3.97%

10 2 385.8 19.8 0.57% 1.03%

15 3 323.2 16.4 0.81% 1.90%

15 5 5 24.5 13.0 0.19% 0.60%

10 1 541.0 20.2 0.77% 1.69%

15 2 419.7 104 0.63% 1.79%

10—3 DF 5 5 5 3.6 8.8 0.03% 0.17%
10 4 120.5 13.6 0.06% 0.17%

15 4 214.8 21.2 0.04% 0.13%

10 5 5 43.7 10.0 0.01% 0.02%

10 2 365.2 28.4 0.28% 0.95%

15 2 371.8 19.4 0.20% 0.89%

15 5 3 246.5 11.4 0.03% 0.06%

10 4 143.5 14.4 0.19% 0.93%

15 0 600.0 12.8 0.73% 2.43%

IF 5 5 5 2.3 5.2 0.02% 0.06%
10 5 66.9 9.4 0.02% 0.08%

15 4 226.6 13.6 0.44% 2.11%

10 5 5 2.9 4.8 0.05% 0.19%

10 2 368.2 20.0 0.34% 0.70%

15 1 480.3 16.6 0.78% 2.06%

15 5 5 3.0 9.2 0.01% 0.06%

10 0 600.0 21.8 0.51% 1.39%

15 1 507.5 10.2 0.90% 3.70%
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Table 4. Experimental results with algorithm Alg-I1.

1) Prob M T | Terminated Avg. time (s) Avg. iter Avg. gap Max. gap
10—2 DF 5 5 5 0.8 3.2 0.07% 0.33%
10 5 1.6 4.6 0.59% 1.71%

15 5 1.1 4.6 0.35% 1.33%

10 5 5 0.8 4.0 0.05% 0.12%

10 4 124.9 11.2 0.58% 1.22%

15 4 185.4 9.6 0.31% 1.03%

15 5 5 8.4 5.2 0.08% 0.18%

10 5 5.9 5.4 0.31% 1.23%

15 1 483.5 8.6 0.62% 1.49%

IF 5 5 5 0.5 2.8 0.24% 0.58%
10 5 6.8 5.4 0.15% 0.50%

15 5 22.6 6.8 0.22% 0.48%

10 5 5 0.3 2.2 0.87% 3.97%

10 4 147.3 10.2 0.44% 1.09%

15 4 153.9 8.8 0.83% 1.89%

15 5 5 2.7 4.2 0.20% 0.60%

10 3 267.9 11.6 0.58% 1.03%

15 3 259.7 7.0 0.65% 2.21%

10—3 DF 5 5 5 0.5 3.8 0.03% 0.17%
10 5 8.5 6.4 0.06% 0.17%

15 5 8.8 6.2 0.03% 0.13%

10 5 5 1.2 3.6 0.01% 0.01%

10 4 137.8 16.2 0.27% 0.95%

15 3 259.8 12.6 0.20% 0.92%

15 5 5 15.3 5.4 0.01% 0.02%

10 5 4.9 5.0 0.19% 0.93%

15 1 485.3 8.2 0.52% 1.61%

IF 5 5 5 0.3 2.6 0.02% 0.06%
10 5 13.4 6.6 0.02% 0.09%

15 5 30.1 7.8 0.03% 0.07%

10 5 5 0.3 2.2 0.05% 0.19%

10 3 242.9 114 0.20% 0.41%

15 3 270.5 10.6 0.45% 1.31%

15 5 5 1.7 3.8 0.01% 0.06%

10 3 389.6 15.8 0.38% 1.01%

15 1 502.1 11.0 0.95% 3.74%
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In contrast, with § = 1073, it terminated in only 131 cases (8 cases less) with an
average gap of 0.22% (0.19% lower). Notably, the average gap over the terminated
runs decreased from 0.33% with § = 1072 to 0.05% with § = 1073, which provides
an experimental illustration of Proposition 3.8 that a sufficiently small § leads to e-
optimality with tighter . At the same time, there is no significant difference between
the gaps when the algorithm hits the time limit: 0.66% with § = 10~2 vs. 0.67% with
§=10"3.
The above gaps stem from three different sources:

(i) stopping the algorithm with a sub-optimal solution due to the time limit;
(ii) the error of the solution due to the extension of the uncertainty set Us; and
(iii) the error of the upper bound due to the difference of the pessimistic robust
solution and the optimistic upper bound of Section 4.4.

It is rather difficult to separate the three sources of error from each other. Yet, the
considerable difference of the gaps in case of termination and timeout (0.05% vs. 0.67%
with 6 = 1073) suggests that component (i) is the most significant in case of time-
out, whereas the same component is obviously not present in case of termination. By
Proposition 3.8, error component (ii) converges to zero as 0 is decreased, which is
illustrated by the reduction of the total gap from 0.33% with § = 1072 to 0.05% with
§ = 1073 over the terminated runs. A special characteristic of error component (iii) is
that it persists even if § is decreased and the algorithm terminates. For a DF instance
with M = 15 and T' = 10, which resulted in one of the greatest gaps among the
terminated runs (1.23% with 6 = 1072 and 0.93% with § = 107%), by observing the
difference of the optimistic and the pessimistic follower responses, we could prove a
stronger bound that shows that the solutions found are within a 0.005% environment
of the supremum. This suggests that component (iii), i.e., the error of the bound is
responsible for the few significant gaps even with 6 = 10™2 after termination.

DF instances were slightly easier for both algorithms than IF instances: the average
gap was 0.25% for DF vs. 0.38% for IF.

As one would expect, almost the entire computation time was taken by solving the
large MILPs encoding the discrete-uncertainty variant in Step 2, whereas the compact
MILP of Step 3 for determining the worst-case response and the LP of Step 4 for com-
puting the characteristic utility could be solved quickly. Moreover, the computation
time for Step 2 increased rapidly with the size of the discrete uncertainty set UP.

Even when the algorithm hit the time limit, it constructed high-quality solutions:
the largest gap encountered by Alg-IT over all instances was 3.74%. Taking a closer look
at the individual iterations, it could be observed that search improved both solutions
and bounds compared to the first iteration. Yet, solutions were improved ca. twice as
much as bounds, which suggests that developing a better initial solution heuristic is
also an intriguing direction for future research.

6.4. Numerical stability

The numerical stability of the computed solutions is a serious issue, which follows
directly from the problem definition: the supremum is located in regions of the so-
lution space where certain follower responses, unfavorable for the leader, are “just
not optimal”. In order to overcome such numerical issues, the tolerance parameters of
the Gurobi MILP solver were chosen to be as strict as possible: primal feasibility tol-
erance (FeasibilityTol), integer feasibility tolerance (IntFeasTol), and dual feasibility
tolerance ( OptimalityTol) were all set to 10~ whereas the Big-M value for feasibility
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relaxations (FeasRelazBigh) was set to 107,

In order to verify the solutions computed by the MILP solver, the feasibility of all
solutions were systematically verified. Regarding optimality, the critical step is the so-
lution of the discrete-uncertainty variant in the final iteration. These MILP problems
were exported to an LP file and solved using IBM ILOG CPLEX Optimization Studio
version 12.6.3 as well, and the solutions from the two MILP solvers were compared.
Among the instances solved to optimality by both solvers, the largest relative differ-
ence between the reported “optimal” solutions was 6.8 - 107°, stemming from slightly
different fractional tariff values x; but identical followers’ responses y%. For two further
instances, the relative difference was 3.8 -107°, yet, with different followers’ responses
y% for a small subset of the indices. For all other instances, the difference was strictly
less than 107°. Observe that these values are considerably worse than what is sug-
gested by the optimality tolerance parameter applied in the MILP solvers. Overall, we
believe that such a numerical precision is acceptable in practical applications, espe-
cially because the approach addresses finding e-optimal solutions, but a note should
be taken that numerical precision is limited by the MILP solver as well.

7. Computational Complexity

7.1. RBOP is X5-Complete

Containment of RBOP in 3% is trivial, since this class includes all problems that can
be expressed in the form JzVyP(z,y), where P is a boolean predicate on the variables
z and y. Then, X5-hardness of RBOP is shown by proving the same property for the
specific application, the robust bilevel demand response management problem.

Proposition 7.1. The decision version of the robust bilevel demand response man-
agement problem is ¥5-complete.

Proof. The claim is demonstrated by reduction from the bilevel knapsack problem
with interdiction constraints (BKIC), also known as the DeNegre variant of the bilevel
knapsack problem, which is known to be X5-complete [32,33]. In an instance of BKIC,
the two decision makers, the leader and the follower, load a set of R items into their
private knapsacks. First, the leader picks some items that fit into its own knapsack
(Zf: L arxy < A), then the follower packs a part of the remaining items (Zf: L by < B,
yr < 1 — x; Vt). The objective of the follower is maximizing the total value of the
knapsack (max Zf: 1 biye), whereas the objective of the hostile leader is to minimize
this value (min 3 7, byy;). This definition of BKIC from [32] assumes that for each
item, the follower’s weight and value, denoted by b;, match each other. Yet, all our
claims apply to the more generic variant where this assumption is omitted, too. In
the decision version of the problem, the question asked is whether the leader can pick
items in such a way that the follower’s knapsack value is at most V.

A corresponding instance of the robust bilevel demand response management prob-
lem with one follower and 3R time periods is constructed as follows. The crux of the
construction is reducing the discrete knapsack problem into a continuous optimiza-
tion problem. In fact, the first R time periods map the two problems to each other,
whereas the remaining 2R periods ensure that the optimum of the discrete and the
continuous problems coincide. Since the problem involves a single follower, the index
of the followers is omitted in the entire proof.

An overview of the constructed energy management problem is presented in Table 5,
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Table 5. Parameters of the robust energy management problem,
received by reduction from BKIC.

Periods Core Integrality 1 Integrality 2
t=1,..,R t=R+1,..,2R t=2R+1,...,3R
X Tt € [0, 1] Tt = Tt—R xr =1—xt_9R
U ut € [—1,0] ur=1—¢ ur=1—¢
Y Yyt € [071] Yt € [0» 1} Yyt € [071]
P pt = by pt=FE pt=FE

with the definition of the ranges for individual z;, u;, and y; variables, as well as the
specification of parameters p;. Constants used include the big number £ = Zf: b +1
and the small positive number € = M%E. The feasible set of tariff values, X, is defined

by the displayed box constraints and the leader’s knapsack constraint Zf: Lapxy < A.
Likewise, the uncertainty set U is given by the ranges in the table and the follower’s
knapsack constraint ) ", by(uy + 1) < B. While 0 < gy < 1 is required for each
individual period, there are no tight bounds on Zi 1 Y+ The decision version asks if
the leader can achieve a profit of at least —V — RE.

First, let us observe that the leader is strongly encouraged to select binary values
for ay, i.e., zy = 0 or 2y = 1. The selection of z; in interval ¢t € [R] determines the
tariff, and hence, indirectly the solution in all other time periods as well. If the leader
sets z; < ¢ for some ¢t € [R], then urys — xr+t > 0 and uopyr — Top+t < 0, and
the follower’s unique response is ygy; = 1 and yog+s = 0 in time periods R + ¢, and
2R + t, respectively. On the other hand, if z; > 1 — ¢, then ug+; — xp+¢ < 0 and
Uop+t — Lo+t > 0, and the unique response is yr+r = 0 and yor+: = 1. However, if
€ <t <1—¢, then both up4t —xpyt > 0 and usp1+ —To2r++ > 0 and in the worst-case
response for the leader, yp+; = 1 and yop4+¢ = 1. Hence, if z; < € or 2y > 1 — ¢ for all
t € [R], then the leader’s profit over the Integrality periods is exactly —RE, whereas
otherwise it is at most —(R + 1)E. The difference between the profits in the two cases
is at least F/, which is strictly larger than the profit that can be achieved in the Core
periods t = 1,..., R, which implies that the leader maximizes its profit by selecting
xp <eoraxy>1—c¢foralltel[R]

For the sake of simplicity, it can be assumed that the leader rounds all values z; < ¢
down to zy = 0, and x; > 1 —¢ up to x; = 1. This does not alter the follower’s response
in the Core periods because the knapsack value is modified by strictly less than 1, and
does not alter the follower response in the Integrality periods either, because the sign
of uy — x4 is preserved. Furthermore, rounding modifies the leader’s profit by less than
1, and accordingly, the response to the question asked in the decision variant also
remains the same.

Now, assume that the original BKIC instance is a YES-instance, i.e., the leader can
select a set of items S such that the follower achieves a profit of at most V. Then,
in the demand response management problem, the leader sets ; = 1 for ¢t € S and
x¢ = 0 for t € [R]\ S. For periods ¢t € S, having z; = 1 and u; € [—1,0] implies that
uy —x¢ < —1, and the follower’s unique response is y; = 0 in these periods. Hence,
these periods do not contribute to the leader’s profit. For ¢t € [R] \ S, z; = 0, and
the follower may set y; = 1 only if u; — xy > 0, that is, the uncertain parameter u;
is 0. This incurs at least —V profit for the leader. Applying binary tariff values also
implies that exactly R units of load will be scheduled in the Integrality periods, which
results in a profit of exactly —RE for the leader. Hence, the total profit over the entire
horizon is at least —V — RE, and accordingly, the instance of the energy management
problem is also a YES-instance.
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Conversely, assume that the demand response management problem instance is a
YES-instance with profit at least —V — RE. Then, by the above, for all ¢t € [R], the
leader must select xy = 0 or x; = 1, and the profit over the Integrality periods is
exactly —RFE. This solution corresponds to a feasible solution for the bilevel knapsack
problem as well, where z; = 1 encodes that the leader selects item ¢. The fact that
the leader collects a profit of at least —V over the Core periods implies that follower’s
knapsack (set of items with u; = 0) has a value of at most V, and the bilevel knapsack
problem is also a YES-instance. ]

An additional consequence of the above proposition is that, since in general no
polynomial-size MILP formulation exists for a ¥5-hard problem, the number of it-
erations of the proposed algorithm is super-polynomial in the worst case. Also, these
findings are in line with those of Buchheim at al. [11], who showed that the complexity
of robust linear bilevel problems with uncertainty in the follower’s objective depends
on the structure of the uncertainty set: with interval uncertainty, the linear bilevel
problem may become X5-hard, whereas with discrete uncertainty, the robust problem
remains in NP.

7.2. The Infinitely Robust Variant is Solvable in Polynomsial Time

In the infinitely robust variant of RBOP, for any x € X and y € Y, there existsau € U
such that y is an optimal follower response for (z, ), that is, Q(x,u) = {y}. Therefore,
the leader must choose x in such a way that it maximizes the minimum profit which
can be achieved over all the possible follower responses. Hence, the infinitely robust
bilevel optimization problem can be formulated as follows:

max z (49)
s.t

(c+a)ly>z WeY (50)
z e X. (51)

Since X is a polyhedron, this is a linear program. Note that a polytope may have an ex-
ponential number of vertices in the number of facets (consider, e.g., the n-dimensional
cube in R™), the number of inequalities in (50) may be exponential in the size of ¥V’
specified by a system of inequalities. Suppose only a subset of the constraints in (50) is
included in the linear program, and let (z/, z’) be an optimal solution of the relaxation.
We can decide if (2/,2') satisfies all the constraints in (50) by solving the following
optimization problem parametrized by xz':

min{(c+2)Ty : ye Y} (52)
Denote the optimal vertex solution of (52) by y(a’). If the optimum value of (52) is
less than 2/, then the inequality in (50) corresponding to y(z') is violated by (2, 2').
Therefore, we add the inequality (¢ 4+ x)y(z’) > z to the LP relaxation. Since (52) is
a linear program, we can solve the separation problem for (50) in polynomial time by
any polynomial time algorithm for linear programming [34,35]. Consequently, by the
equivalence of separation and optimization [36], we can solve (49)-(51) in polynomial
time by the ellipsoid method of Khachiyan [34]. Thus, we have proved the following
result:
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Theorem 7.2. The infinitely robust variant of RBOP can be solved in polynomial
time.

It is easy to see that if X C U, then the RBOP is infinitely robust.

8. Conclusions

This paper introduced a robust bilevel optimization framework for tackling bilevel
problems with polyhedral uncertainty in the coefficients of the followers’ objective
function. The framework assumes that both the leader’s and the followers’ constraints
are linear, whereas the followers’ objective is bilinear. This robust bilevel problem is,
in general, ¥5-hard, i.e., it is located one level higher in the polynomial hierarchy than
its deterministic counterpart.

An efficient solution method was proposed, based on the idea of iteratively building
a discrete set of so-called characteristic utilities to map the relevant areas of the original
continuous, polyhedral set. It was formally proved that the algorithm terminates in
finitely many steps with an e-optimal solution for any given € > 0 for a problem that,
in general, does not admit a maximum but only a finite supremum.

The approach was illustrated on a demand response management problem in smart
grids with uncertainty in the consumers’ utilities. The proposed algorithm solved in-
stances of relevant sizes, with up to 15 followers and 15 time units, to proven e-
optimality, whereas it found high-quality robust solutions and proved strong bounds
for the remaining open instances as well. Notably, this is significantly larger than the
instances typically investigated in earlier contributions in the field of robust bilevel
optimization.

There are a number of intriguing directions for future research. A key to the effi-
ciency of the proposed method was the relatively low number of discrete utility values
that could properly represent the original polyhedral uncertainty set. It is a natu-
ral question whether this observation generalizes to other applications. Regarding the
improvement of the algorithm, the adaptive adjustment of parameter  can ensure
further performance guarantees, namely, achieving e-optimality for an a priori given
€ > 0. Also, the problem size tractable by the exact method may fall short of that
desirable in practical applications, and hence, the development of effective heuristics
is essential. Finally, it will be interesting to generalize the approach to broader classes
of problems, e.g., with polyhedral uncertainty in the followers’ constraint coefficients
or integer variables for the leader.
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Appendix A. Proof of Proposition 3.6

Proof. Suppose (z*,y*,u*) is an 5-optimal robust bilevel feasible solution. If z* is in
the relative interior of X, we are done. Otherwise, * is on the boundary of X. By
Corollary 3.3, we may assume y* € Y.

We call y’ € Y bad for some 2’ € X if 2/ € XP!(y') and 2* — f(a/,y') > |z*|+e. We
partition Y into two subsets: Y4 containing all the vertices of Y which are bad for
2*, and the rest Y9904 .= Y \ ybad Clearly, y* € Y9904, Moreover, for each y? € Ybad
and u € U, there exists y9 € Y990d guch that

(u— ") Ty? > (u— )Ty,
otherwise y* would be an optimal follower answer for (z*, ), and then z* — f(z*,3%) >
g|lz*| + e. This implies f(x*,y*) > f(z*,3°), hence, (z*,y*,u*) is not a robust bilevel
feasible solution, a contradiction. We argue there exists A > 0 such that for each

yb € Vi and u € U, there is yI € Y 990d such that
(u—a)Ty? > (u—a")Ty’ + A
To determine A, for each 3 € Yb“d, consider the optimization problem

value(y®) == min max (u— z*)Ty? — uy’. (A1)
u€U ygeygood

Inside the minimum, we have a piecewise-linear, convex, affine function of u. So the
minimum is attained at some point in U. Since 3° is bad for z*, the minimum value in
(A1) is strictly greater than —(z*)Tyb. Therefore, A(y?) := value(y®) + (z*)Ty? > 0.
By the choice of A(yP), for any u € U, there is 49 € Y9°° such that (u — 2*)Ty9 >
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(u—2*)Ty® + A(yP). Define A := min{§|2*, min,, yaa A(y?)}. Then, we can choose
a non-zero vector v such that z’ := z* + v is in the relative interior of X, and |[vy9| +
lvTy?| < A for any pair of (y9,4°) € ygood 5 ybad Tt follows that any y9 € Y990 jg
good for z/, namely,

€
(c+ ")yt = (c+ )Ty + 0Ty > 2% — §|z*| —A—e>2"—¢|z"| —e.
Moreover, for any u € U, and 3 € Ybad, we can find y9 € Y9904 guch that
T,b

(uw—a")Ty? > (u—a)"y",

hence, 3 cannot be the follower’s optimal answer for (z’,u). Therefore, for any wu,
there exists 9 € Y9°°¢ such that (z',y9, u) is an e-optimal robust bilevel solution. [
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