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Abstract

This paper addresses path planning for articulated industrial
robots over a sequence of points defined in the Cartesian task
space, which is a common problem faced in assembly, manu-
facturing, and material handling applications. The particular
challenge lies in the fact that for typical 6 degrees-of-freedom
industrial robots, the inverse kinematic problem admits vari-
ous solution branches, i.e., multiple candidate robot configu-
rations for the same task-space point. Therefore, this problem
is a combination of a discrete optimization problem (select-
ing the configurations) and a path planning problem in the
robot joint configuration space (finding a collision-free path).
Earlier methods address this problem by solving the two sub-
problems sequentially, which may easily lead to sub-optimal
solutions. This paper introduces a Benders decomposition ap-
proach to solve the two sub-problems jointly, by adapting
standard techniques on each individual level: dynamic pro-
gramming for the selection of configurations in the master
problem, and probabilistic roadmaps for path planning in the
sub-problem. The efficiency of the approach is demonstrated
in a medium-size industrial case study.

1 Introduction
A key challenge in the planning of robotic assembly, man-
ufacturing, or handling processes is that tasks specified in
the task space, i.e., the Cartesian coordinate system attached
to the workpiece or the workcell, have to be transformed
into motion in the robot’s joint configuration space. Since
a robot end effector pose in the task space (task point) can
be reached by various robot configurations, planning also
involves the discrete optimization problem of selecting the
most efficient combination of robot configurations for each
task point. Obviously, this optimization problem is tightly
related to the problem of robot path planning, which needs
to be solved in the joint configuration space. Finding robot
configurations and collision-free paths that minimise the cy-
cle times is the key to maximising productivity.

In most previous approaches, the two levels are han-
dled sequentially: either (1) the configurations are deter-
mined first using some heuristics, then collision-free paths
are planned; or (2) the collision-free paths are pre-computed
between every possible combination of configurations, and
the configurations are selected based on the computed path

lengths to minimize the cycle time (Ulrich et al. 2016; Vil-
lumsen and Kristiansen 2017). However, the first approach
may lead to overly long paths in dense environments due
to the big difference between the collision-free and heuris-
tic path lengths, whereas the second approach may incur
excessive computation times. Previous research addressed
responding this challenge by integrating inverse kinematics
into the path planning algorithm and using heuristic goal and
obstacle distance measures to select candidate robot config-
urations (Bertram et al. 2006).

This paper presents an algorithm using Benders decom-
position (Rahmaniani et al. 2017) which, given a sequence
of points in task space, computes an efficient path over these
points. Experimental results show that this approach effec-
tively reduces cycle time in a reasonable amount of compu-
tational time even in crowded and difficult environments.

The rest of the paper is organised as follows. Section 2
gives a rigorous mathematical formulation of the problem.
Section 3 presents how Benders decomposition can be ap-
plied to this problem. Section 4 contains the results of
computational experiments in comparison with other ap-
proaches. Finally, in Section 5, conclusions are drawn.

2 Problem Definition
Let x0, x1, · · · , xn be robot poses, with fully defined posi-
tions and orientations of the robot’s end effector in the Carte-
sian task space that should be visited in this particular order.
It is assumed that the robot performs a cycle, i.e., x0 = xn,
although this assumption can be easily lifted. The joint con-
figuration space of the robot is denoted by C and its subset of
non-colliding configurations by Cfree. Each point xi in the
task space can be reached by finitely many (ki > 0) robot
joint configurations qi,1, · · · ,qi,ki .
C is endowed with a metric t(u,v) which measures the

time it takes for the robot to move from configuration u to
v on the straight segment in the joint configuration space
uv ⊂ C, disregarding potential collisions. It is assumed that
t is monotonous in the length of the movement of each in-
dividual joint. Experiments were performed using trapezoid
joint speed profiles, corresponding to constant joint acceler-
ations at the beginning and end of the motion, and a constant
joint velocity in between.



Figure 1: Robotic workcell of the working example, with a
robot end effector path in blue. Each segment of the path is
linear in the joint configuration space.

The problem then consists in finding a minimum time
collision-free robot path that visits the above poses in the
given order, i.e., a function f and a sequence of configura-
tions {si}mi=0 in Cfree such that:

f : {0, · · · , n} → N, 1 ≤ f(i) ≤ ki

The sequence {qi,f(i)}ni=0 is a sub-sequence of {si}mi=0

with s0 = q0,f(0), sm = qn,f(n) and for each i ∈ [1,m]
the segment si−1si lies entirely in Cfree.

T =

m∑
i=1

t(si−1, si) is minimal

2.1 Working Example

The working example of this paper consists of a real indus-
trial workcell and a fixed-base UR10 articulated robot with 6
rotational degrees of freedom. Seven points of the task space
must be visited in the given order, and three or four collision-
free configurations could be obtained for each of them using
an analytical inverse kinematics solver. Collisions may oc-
cur not only between the end effector and the workcell, but
between any two robot links or a robot link and the workcell
as well. A particular challenge stems from the fact that task
points are located in hardly accessible regions all around the
workcell. Accordingly, connecting the task points to other
robot configurations with collision-free segments required
sophisticated sampling and local planning in the probabilis-
tic path planner applied, and subsequent task points could
not be connected in a trivial way.

3 Benders Decomposition Solution Approach
3.1 Overview
From now on, a problem instance is considered where x0 =
xn, i.e., a cycle is looked for.

The separation of the two levels of the problem is not
difficult: if the configurations are chosen, a multi-query
path planner can be called to compute a collision-free path
through those points, details are in section 3.3. If distances
between all possible pairs of robot configurations are given,
configurations can be chosen using a simple dynamic pro-
gramming algorithm as described in Section 3.2.

In Benders terminology, the choice of configurations is
called the master problem, while the sub-problem addresses
planning a collision-free path through the fixed configura-
tions. In one iteration, the master problem is solved first.
To be able to accomplish this, the distances are needed be-
tween configurations which are either heuristic estimates
t(qi,f(i),qi+1,f(i+1) (taking a straight line segment regard-
less of collisions) or previously computed collision-free path
lengths (every such path is calculated only once). For this
choice of configurations let us denote the estimated path
time (which is only an approximate value as there might be
collisions along the way) by T ∗. Observe that, as a conse-
quence of the triangle inequality, T ∗ is a lower bound on the
optimal path since every other path is longer even if they
collide and by making them collision-free they cannot get
any shorter.

This lower bound is called an optimality cut. At the end of
the iteration, the sub-problem is solved, edge weights are up-
dated, and unless a path is found whose cycle time is equal
to the cost of master solution, the procedure is continued.
When equality is reached the optimal path has been found.
Observe that with a probabilistically complete and optimal
path planner for solving the sub-problem, the overall ap-
proach is probabilistically complete and optimal as well.

3.2 Master Problem: Selection of Robot
Configurations

Let G = (V,E) be a weighted digraph with vertices qi,j

(robot joint configurations) and two vertices qi1,j1 and qi2,j2
connected by a directed edge if and only if i2 − i1 = 1. The
weight of the edge (qi,j ,qi+1,k) is denoted by wi,j,k.

The objective is to find a function g such that:

g : {0, · · · , n} → N, 1 ≤ g(i) ≤ ki, g(0) = g(n)

W =

n−1∑
i=0

wi,g(i),g(i+1) is minimal

This problem can be solved by dynamic programming as
follows. Let di,j,k be the length of the shortest path starting
at q0,k and ending at qi,j . Observe that di,j,k satisfies the
following recurrence relation:

di,j,k =


0, if i = 0, j = k

∞, if i = 0, j 6= k

min1≤m≤ki−1
(di−1,m,k + wi−1,m,j), if i > 0
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Figure 2: Smoothing by deleting (a), shifting (b), and adding
(c) intermediate path points.

After calculating all intermediate values the final result is
simply:

W = min
j∈{1,··· ,k0}

dn,j,j

The exact path can be traced back by maintaining a par-
ent array pi,j,k which keeps track of the minimal index m
during computation. If every ki can be bounded from above
by k then the running time of the master-problem solver is
O(nk2).

3.3 Sub-problem: Robot Path Planning
For a fully instantiated choice function f the sub-problem is
simply finding collision-free paths between qi−1,f(i−1) and
qi,f(i). This is done using a standard probabilistic roadmap
(PRM) planner as described in (Kavraki et al. 1996) with
minor differences compared to the original paper.

First of all, we found it useful to construct a dense graph
rather than a forest, as not only an arbitrary collision-free
path is looked for but one with length as short as possi-
ble. Similarly, we favoured Dijkstra’s algorithm over a sim-
ple breadth-first search as it gives the shortest path between
two vertices in the graph. In addition, the sampling of PRM
nodes was enhanced by choosing some configurations closer
to obstacles and narrow passages governed by a Gaussian
distribution as described in (Boor, Overmars, and van der
Stappen 1999) and (Hsu et al. 2003).

Moreover, paths returned by PRM queries can be signif-
icantly improved using heuristic path smoothing algorithms
which are not discussed in detail in the literature. Three such
algorithms were employed (see Fig. 2):

• Smoothing by deletion: The simplest and perhaps the
most effective out of the three, this path smoother tries to
shortcut the path by deleting redundant path points. Given
a path {si}mi=0 entirely in Cfree, it looks for a minimum-
length sub-sequence {s′j}`j=0 in Cfree with identical end-
points. To find this sub-sequence, it constructs a weighted
graph G = (V,E) with vertices {si}mi=1. An edge goes
from si to sj t(si, sj) iff i < j and sisj ⊂ Cfree. Observe
that the problem is finding a shortest path in the directed
acyclic graph G, which has a well-known dynamic pro-
gramming solution.

• Smoothing by shifting: When an intermediate node can-
not be deleted, this path smoother tries to lower path cost
by reducing the detour made to avoid the obstacle. For

this purpose, it takes each intermediate path point si and
attempts to replace it with a point s′i selected from the sec-
tion sis0i , where s0i divides section si−1si+1 according to
|si−1s0i |
|s0i si+1|

= |si−1si|
|sisi+1| . The heuristic tries a pre-determined

number of points on the section sis0i , and selects the one
leading to collision-free path sections closest to s0i . Since
metric t is monotonous, the shifted path is shorter than the
original one.

• Smoothing by adding: This algorithm aims to add ap-
propriate points inside the intermediate segments to cut
off sharp corners of the path. It checks consecutive con-
figurations si−1, si and si+1 of the path and looks for
s′i ∈ si−1si and s′′i ∈ sisi+1 such that s′is

′′
i ⊂ Cfree and

si−1s′is
′′
i si+1 is shorter than si−1sisi+1. Note that si−1s′i

and s′′i si+1 are automatically collision-free.

4 Computational Experiments
Three different approaches to solving the problem were
compared using the collision detection and path planning li-
brary presented in (Zahorán and Kovács 2019), on 12 differ-
ent sequences (including the real industrial point sequence
and 11 random sequences) in the robotic cell presented in
Section 2.1. In a pre-processing step, a closed-form inverse
kinematics solver was run to obtain joint configurations, and
a PRM was built for the workcell with about 30000 ver-
tices, which took 43 minutes on a personal computer with
Intel i5 1.80 GHz CPU and 16 GB RAM. Since robotic pro-
cess planning is an iterative procedure by nature, the time of
building the PRM was not considered as a part of the plan-
ning time.The approaches were as follows:

• Sequential: The baseline approach in industry first de-
termines the robot configurations based on estimated dis-
tances, and then calculates the collision-free path between
them. It corresponds to the optimality cut calculated in the
first iteration of the Benders approach.

• Pre-compute: This method first computes all collision-
free paths between configurations, and then runs the algo-
rithm explained in Section 3.2 to find the shortest cycle.

• Benders: The approach proposed in this paper.

Table 1 summarizes the results of the computational ex-
periments. Column Obj contains the cycle time obtained
using the given algorithm, while Impr shows the improve-
ment compared to the baseline Sequential algorithm. Col-
umn Time refers to the average computation time, while col-
umn Iter shows the number of iterations performed (what an
iteration means is described in Section 3). Finally, column
PRM gives the amount of calls made to the path planner.

The results are quite satisfactory: even though the Sequen-
tial approach leads to good paths, it could be improved by up
to 16.03%, on average 4.65% by the optimal planners. More-
over, for the actual industrial sequence, the optimal path was
14.73% faster than the path designed by an experienced en-
gineer with the help of simulation software, and 10.85%
faster than the Sequential path, which is extremely valuable



Obj [s] Impr [%] Time [s] Iter PRM
Avg. Avg. Max. Avg. Avg. Avg.

Sequential 10.8 - - 19.6 1 7
Pre-compute 10.3 4.65% 16.03% 325.8 1 69
Benders 10.3 4.65% 16.03% 89.2 7.5 24

Table 1: Results of the computational experiments.
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Figure 3: Evolution of estimated cycle time (solution of the
master problem) and real cycle time (solution after collision-
free path planning).

in the given application. Observe that Benders had to com-
pute collision-free paths for only 34.78% of the edges, thus
the computation time could be reduced by 72.62% compared
to Pre-compute. We expect that this gain will increase fur-
ther on larger problems or in less crowded environments.
It is noted that the 97.8% of the planning time is taken by
the smoothing operators, since they have to perform compu-
tation on the actual workcell geometry. Moreover, the pro-
posed Benders approach can be interrupted with a valid solu-
tion when hitting a time limit. The feasibility and the cycle
time of the computed paths was verified in experiments in
the real robotic cell as well.

5 Conclusions
This paper presented an algorithm based on Benders decom-
position that computes an efficient path in robot joint con-
figuration space over a sequence of points specified in task
space. For this purpose, it selects robot configurations for
each point and computes a collision-free path through these
configurations iteratively, until an optimum (in Benders con-
text) is reached. The efficiency of the approach was demon-
strated in an industrial case study, where it produced paths
with up to 16.03%, on average 4.65% lower cycle times than
the commonly applied sequential algorithm, and did it in less
than a third of the time that is required to pre-compute all
collision-free edges, even in a rather dense workcell.

However, we are aware of the fact that there are obvious
limitations to the proposed solutions. First of all, we have
worked under the assumption that the order of points in the
task space is given. In many environments this is not true,
hence the problem of sequencing must be tackled as well. It
would be intriguing to see if this extension could be handled
at the same time, just as it was done in our case. Moreover,

robot joint intervals larger than 2π induce a rotational sym-
metry that could be exploited to increase the efficiency of
the proposed approach. Finally, the extension of the method
to smooth, e.g., spline trajectories would be relevant in many
industrial applications.

Acknowledgments
The authors are grateful to László Zahorán for granting ac-
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