
An Efficient MIP Model for the Capacitated
Lot-sizing and Scheduling Problem with

Sequence-dependent Setups

András Kovácsa,c, Kenneth N. Browna,b, S. Armagan Tarimb,d

aCork Constraint Computation Centre, University College Cork, Ireland
bCentre for Telecommunications Value-Chain Research, Ireland

cComputer and Automation Research Institute, Budapest, Hungary
dHacettepe University, Department of Management, Ankara, Turkey

E-mail addresses: akovacs@sztaki.hu, k.brown@cs.ucc.ie, armagan.tarim@hacettepe.edu.tr

September 15, 2008

Abstract

This paper presents a novel mathematical programming approach to the single-
machine capacitated lot-sizing and scheduling problem with sequence-dependent
setup times and setup costs. The approach is partly based on the earlier work
of Haase and Kimms (2000) which determines during pre-processing all item se-
quences that can appear in given time periods in optimal solutions. We introduce a
new mixed-integer programming model in which binary variables indicate whether
individual items are produced in a period, and parameters for this program are gen-
erated by a heuristic procedure in order to establish a tight formulation. Our model
allows us to solve in reasonable time instances where the product of the number
of items and number of time periods is at most 60–70. Compared to known opti-
mal solution methods, it solves significantly larger problems, often with orders of
magnitude speedup.

Keywords: Lot-sizing, scheduling, sequence-dependent setups, mixed-integer pro-
gramming.

1 Introduction
This paper considers the lot-sizing and scheduling problem involving production of
multiple items on a single finite capacity machine with sequence-dependent setup costs
and setup times. In this problem, the decision maker must decide which items to pro-
duce in which periods, and must specify the exact production sequence and production
quantities to satisfy deterministic dynamic demand over multiple periods that span a
planning horizon, in order to minimise the sum of setup and inventory holding costs.
The consideration of capacity limitations, significant sequence-dependent setup costs

1

and non-zero setup times exacerbates the inherent difficulty in solving lot-sizing and
scheduling problems and restricts the problem size that can be tackled in reasonable
time. Ignoring these features when planning production aggravates costs and reduces
productivity, particularly in process industries such as chemicals, drugs and pharma-
ceuticals, pulp and paper, food and beverage, textiles, or ceramics. Other examples
include discrete manufacturing in industries such as aerospace, defense and automo-
tive. All such manufacturers could benefit significantly from progress in this research
area.

Recent work by Haase and Kimms (2000) proposes an exact optimisation approach
to the problem. Their approach is based upon a mixed-integer programming (MIP) for-
mulation. They start by generating all possible efficient sequences of items, and then
use binary variables in the MIP to denote whether a sequence is selected for a given
time period. However, the applicability of their approach is limited to either a small
number of items or a short planning horizon. In this paper, we present an alternative
model, which also uses pre-generated efficient sequences, but employs binary variables
to indicate whether or not an item is produced in a given period. This yields smaller
models, but makes it harder to express constraints on the setup costs. A naive formu-
lation of these constraints gives loose LP relaxations, and hence an inefficient model.
We then develop a heuristic algorithm which generates much tighter constraints.

We show experimentally that the proposed MIP model outperforms all previously
known optimisation approaches to the capacitated lot-sizing and scheduling problem
(CLSP) with sequence-dependent setups. It gives up to two orders of magnitude speedup
in solution time over the Haase and Kimms model, and can solve larger instances. We
also show that the efficient sequences can be generated more effectively, and that the
same underlying model can be applied to a number of variants of the problem with
similar time performance. The practical implications of these are significant.

The paper is organised as follows. In Section 2 we define the CLSP with sequence-
dependent setups. Section 3 summarises previous work on this problem. In Section 4,
we present an efficient dynamic program (DP) for generating the set of item sequences
that might be applied in time periods in optimal solutions. Afterwards, we define a new
MIP formulation of the problem (Section 5), and evaluate its performance on a set of
randomly generated problem instances (Section 6). Finally, conclusions are drawn and
directions of future research are outlined.

2 Problem definition
The capacitated lot-sizing and scheduling problem with sequence-dependent setup
times and costs (CLSPSD) involves NI different items able to be manufactured on
a single machine over a series of NT time periods. In each time period t, we must
decide how many units xit of each item i to produce. Since we have a single machine
available, the production of different items within a time period must be sequenced.
However, switching from item i to item j requires a setup, which occupies T i,j units
of the capacity in the given time period, and incurs Ci,j cost. Producing one lot of item
i employs the machine for pixit time, which is thus proportional to the lot size. The
sum of all setup and production times within a time period cannot exceed the avail-

2

able capacity Ct in that period. The demand dit for each item and time period is fully
known in advance, and must be met exactly, either from production in that period or
from excess produced in previous periods. The cost of a solution is composed of the
sequence-dependent setup costs and the inventory holding costs hi per excess unit of
item i at the end of every time period.

The objective is to choose the production quantities and production sequences for
each time period to meet the demand while minimising the total cost. The following
assumptions are made.

(i) The cost of switching from item i to item j can be computed as Ci,j = qi +
r T i,j , where qi is the direct setup cost of switching to item i, and r is the time-
proportional setup coefficient.

(ii) Setup times satisfy the triangle inequality, i.e., T i,j ≤ T i,k + T k,j . Due to the
previous assumption, the triangle inequality holds also for the setup costs.

(iii) The setup states are carried over from one time period to the next. It is allowed to
switch from one item to another in idle periods (i.e., when no production occurs),
but it incurs the same setup cost as if the item was produced.

(iv) Setups are performed within one time period. This also implies that a problem
instance is feasible only if T i,j ≤ Ct holds for all relevant pairs of items i and j
and time period t.

In the micro-level representation of the solutions of CLSPSD, several items can
be produced in each time period on the same machine, sequentially one after the other.
Note that since setup times and costs are sequence-dependent, the sequence of item pro-
duction in a period affects both feasibility and cost, and is a crucial issue for generating
optimal solutions. Choosing a sequence of items σ = (ik1 , ik2 , ..., ikn) for production
in time period t means that the machine is set up to produce item σ[1] = ik1 at the be-
ginning of t; after producing a certain amount of σ[1], a changeover from σ[1] to σ[2]
occurs, and this continues until the end of time period t. At that point, the machine will
be set up to produce item σ[nσ] = ikn , where nσ denotes the number items in sequence
σ. Since setup states are carried over, the sequence applied in time period t+ 1 has to
begin with item σ[nσ].

Note that applying sequence σ in t does not imply that a positive amount of items
σ[1] or σ[nσ] are actually produced in period t. It might happen that item σ[1] was
produced in period t−1, but switching from σ[1] to σ[2] takes place in t, or analogously,
the machine is set up to item σ[nσ] so that period t + 1 can start immediately with
production. Hence, for the sake of simplicity, when saying an item is produced in a
time period, we allow the production of zero quantities as well. At the same time, since
the triangle inequality holds for the setup times, producing an empty lot of item σ[k]
for k = 2, ..., n− 1 would lead to sub-optimality.

The micro-structure of a time period is illustrated in Fig. 1. Observe that the overall
capacity required in time period t can be divided into two components. First, the ca-
pacity spent for setups, the amount of which depends only on the sequence applied, but

3

T 1,2 T 2,3 T 3,4

p1 x t 1 p2 x t 2 p3 x t 3

Figure 1: A possible micro-structure of period t if sequence (i1, i2, i3, i4) is applied.

not on the actual lot sizes. In contrast, the capacity required for production is propor-
tional to the amounts of each item produced. The sum of these two components must
not exceed the capacity available in the given time period.

3 Previous work on CLSPSD
Capacitated lot-sizing problems and their different variants are widely studied in the lit-
erature of operations research. A review of various lot-sizing and scheduling models,
including small-bucket, large-bucket, and continuous time formulations is presented in
(Drexl and Kimms, 1997). Another survey by Belvaux and Wolsey (2001) discusses
modelling options for setups and other practical requirements in small-bucket as well
as large-bucket representations. The authors also propose valid inequalities for the
efficient MIP formulation of these problem variants. Karimi et al. (2003) present a
classification scheme for capacitated lot-sizing problems and give references to differ-
ent exact and heuristic solution approaches. The strong NP-hardness of the multi-item
capacitated lot-sizing and scheduling problem (CLSP) has been proven by Chen and
Thizy (1990).

The literature of CLSP with sequence-dependent setup times and setup costs is
considerably scarcer. A local search approach combined with dual re-optimisation
for CLSPSD has been proposed by Meyr (2000). This approach was extended to the
case of parallel machines by the same author in (Meyr, 2002). Exact optimisation
approaches to CLSPSD have been suggested by Gupta and Magnusson (2005), and
Haase and Kimms (2000), both using MIP techniques. Gupta and Magnusson define a
MIP that makes not only the lot-sizing, but also all sequencing decisions within time
periods on the fly. Although this approach makes it possible to relax assumption (i)
about the relation of setup times and costs, it allows us to find optimal solutions for
very small instances only, e.g., with 3 items and 3 time periods. For larger problems, a
heuristic procedure is proposed in the same paper.

Below, we discuss in detail the approach proposed by Haase and Kimms (2000),
but use a slightly different terminology. The authors analysed the item sequences that
can occur in given time periods in an optimal solution of a CLSPSD, and introduced
a MIP to choose one such sequence for each time period. They pointed out that item
sequences can be classified into scenarios. A scenario α = 〈if , il, I〉 is identified

4

by the first and last items if and il, and the set I of all items produced in the time
period. Now, for each scenario α, there exists a sequencing σα of the item set I with
σα[1] = if , σα[nσα] = il that minimises the setup time incurred by the sequence, i.e.,

Tσα =
nσα−1∑
k=1

Tσα[k],σα[k+1].

This sequence σα is called the efficient sequence corresponding to scenario α. Note
that it follows from assumption (i) that the same σα also minimises the setup cost.
The authors have shown that the application of a sequence that is not efficient for
the given scenario in a solution leads to sub-optimality. Consequently, the set of all
item sequences that can be applied in optimal solutions consists of the above defined
efficient sequences. If there are several efficient sequences for a scenario, then one can
be chosen arbitrarily. The number of scenarios – and therefore, of efficient sequences
as well – is

NS = NI(NI − 1) 2NI−2 + NI 2NI−1,

where the first and second parts stand for the number of scenarios with i 6≡ j and
i ≡ j, respectively. Note that NS grows exponentially with NI . Unless some special
inference can be performed on the demands or costs, any efficient sequence can take
part in an optimal solution: consider an instance with two time periods, an initial setup
state of if , and demands such that di1 > 0 iff i ∈ I and dil2 = C2/p

il . Now, it is
easy to see that if holding costs are high, then scenario 〈if , il, I〉, and its corresponding
efficient sequence must be applied in the first time period in the optimal solution of
the instance. The same example illustrates that scenarios with il ≡ if might appear in
optimal solutions1. Idle periods can be represented by a scenario of the form 〈i, i, {i}〉
with zero production.

Haase and Kimms (2000) argue that each efficient sequence can be determined by
solving a travelling salesman problem (TSP) corresponding to the scenario, where the
setup time of the sequence equals the value of the optimal TSP solution. Although
solving NS separate TSP instances can be time consuming, in an industrial application
this pre-processing step has to be carried out only when the products of the factory or
the setup times change.

Having generated all efficient sequences, Haase and Kimms (2000) define a MIP
containing binary variables vσt to indicate whether sequence σ is applied for production
in time period t. Consequently, we call this MIP a sequence-related formulation. Other
variables, xit standing for the amount of item i produced in period t and sit denoting
the stock of item i at the end of period t, and the constraints are as in the classical MIP
representation of CLSP (Drexl and Kimms, 1997). Hence, this MIP can be described
using O(NSNT) binary variables, O(NINT) real variables, and O(NINT) inequali-
ties. The authors report that this MIP is capable of solving instances with up to 3 items
and 15 time periods, or 10 items and 3 periods.

1Apparently, many papers in the sequence-dependent lot-sizing literature ignore this phenomenon, see
e.g., (Gupta and Magnusson, 2005) and (Haase and Kimms, 2000).

5

4 A DP for computing efficient sequences
In this section, we show that the set of all efficient sequences can be generated by a
quick DP, without solving a separate TSP for each of theNS scenarios. A similar algo-
rithm was originally proposed by Bellman (1962) for solving individual TSP instances.

The DP is based on the observation that if σ = (i1, i2, ..., in−1, in) is an effi-
cient sequence for scenario α = 〈i1, in, {i1, ..., in}〉, then the shorter sequence σ′ =
(i1, i2, ..., in−1) is an efficient sequence for the scenarioα′ = 〈i1, in−1, {i1, ..., in−1}〉.
From this, it follows that the efficient sequence for scenario α can be constructed from
one of the efficient sequences for scenarios 〈i1, ik, {i1, ..., in−1}〉, ik ∈ {i2, ..., in−1},
by appending item in.

The DP presented in Fig. 2 exploits this consequence. It constructs optimal TSP
solutions for all the scenarios in increasing order of the number of items contained.
For each non-trivial scenario α, it computes Θ, the set of candidate sequences that –
by appending one item – can become an efficient sequence for α, and chooses the one
with minimal setup time. The time complexity of the algorithm is O(NSNI).

1 PROCEDURE ComputeEfficientSequences()
2 FORALL scenario α = 〈if , il, I〉 ordered by increasing |I|
3 IF |I| ≤ 2 THEN
4 σα := the only sequence that realises α
5 ELSE
6 IF if ≡ il THEN
7 Θ := efficient sequences for scenarios

{〈if , i′l, I〉 | i′l ∈ I \ {if} }
8 ELSE
9 Θ := efficient sequences for scenarios

{〈if , i′l, I \ {il}〉 | i′l ∈ I \ {if , il} }
10 σα := σ + il, where σ ∈ Θ is the the sequence that

minimises Tσ + Tσ[nσ],il

Figure 2: A dynamic program for computing efficient sequences.

5 An efficient MIP model for CLSPSD
The drawback of the sequence-related MIP representation of CLSPSD presented in
Section 3 is that the number of binary variables grows exponentially with the number
of items, which leads to poor scaling. Below we define an item-related representation
with only O(NINT) binary variables, yit deciding if item i is produced in period t, and
zit indicating if item i is produced last in period t. Note that these variables unambigu-
ously identify the sequence applied in each time period t: it is the efficient sequence
corresponding to scenario 〈if , il, I〉, where I = {i | yit = 1}, if is the unique item
with zift−1 = 1 and il with zilt = 1.

6

While most constraints of CLSPSD can be expressed using variables and inequal-
ities of the classical MIP model of lot-sizing (Drexl and Kimms, 1997) (see also
Sect. 5.2), the capacity constraint and the objective function requires a different treat-
ment: the sequence-dependent setup times and costs have to be considered in them.
For this purpose, we introduce real variables ut to denote the setup time incurred in
time period t. The setup cost that occurs in period t can be expressed from ut using the
linear expression introduced in assumption (i).

Now, the setup time ut has to be related to the sequence applied in period t. Since
sequences are not explicitly modelled in the MIP, this can be done by means of linear
inequalities on variables yit, z

i
t−1, and zit. They will take the form

ut ≥ L̄ȳt + M̄ z̄t−1 + N̄ z̄t +K,

where L̄, M̄ , N̄ , and K are constants to be defined later. These inequalities provide
lower bounds on ut. The set of inequalities is sound if, no matter which efficient
sequence σ is chosen for a period t, the strongest lower bound among all these in-
equalities on ut is exactly Tσ .

We will define one such inequality for each sequence σ, and call it the σ-inequality.
The value of its r.h.s. – with the substitution of the variables according to an arbitrary
sequence σ′ – is the σ′-substitution of this inequality. Finally, if the σ′-substitution of
a σ-inequality is smaller than, equal to, or larger than Tσ′ , then we call this inequality
non-constraining, constraining, or over-constraining on σ′, respectively.

Now, a sufficient condition for the soundness of the set of σ-inequalities can be
stated as follows. Firstly, for each sequence σ, the σ-inequality has to be constraining
on σ. Secondly, all other inequalities must not be over-constraining on σ. The standard
mathematical programming method for specifying such a set of inequalities is the use
of so-called big-M constraints (Williams, 1999). The big-M formulation of the σ-
inequality for a given σ takes the form

ut ≥ Tσ −
∑
i∈σ

(1− yit)Liσ +
∑
i 6∈σ

yitL
i
σ

− (1− zσ[1]
t−1)Mσ[1]

σ +
∑
i 6=σ[1]

zit−1L
i
σ

− (1− zσ[nσ]
t)Nσ[nσ]

σ +
∑

i 6=σ[nσ]

zitM
i
σ,

where Liσ , M i
σ , and N i

σ are sufficiently large coefficients. This can be rewritten as

ut ≥ Tσ +
∑
i

(yitL
i
σ + zit−1M

i
σ + zitN

i
σ)− (

∑
i∈σ

Liσ +Mσ[1]
σ +Nσ[nσ]

σ).

It is easy to see from the original form of the inequality that if variables are sub-
stituted according to sequence σ, then all addends on the r.h.s. except for Tσ are zero,
for an arbitrary choice of coefficients Liσ , M i

σ , and N i
σ . Therefore, the σ-inequality

is constraining on σ. Also note that the coefficients can be selected in a way that the
inequality is not over-constraining for any other sequence, e.g., with

7

Liσ =
{
∞ if i ∈ σ
0 otherwise M i

σ =
{
∞ if i = σ[1]
0 otherwise N i

σ =
{
∞ if i = σ[nσ]
0 otherwise.

However, this choice of coefficients would lead to extremely weak LP relaxations.
Next, we will show how to generate coefficients for tighter relaxations, and hence more
efficient MIPs.

5.1 Computing coefficients for the setup time inequalities
Note that the challenge of computing appropriate coefficients for the setup time in-
equalities is analogous to the problem of lifting (Marchand et al., 2002): coefficients
are sought for inequalities of known form so as to gain tight LP relaxations. Hence,
we take an approach similar to that used in sequential lifting. We assign initial values
to Liσ , M i

σ , and N i
σ , and then set the coefficients one by one to their extreme value

permitted by the non-over-constraining condition. We begin by defining the following
sets of sequence pairs:

Li := {〈σ, σ′〉 | i ∈ σ ∧ i 6∈ σ′ ∧ ∀j 6= i : (j ∈ σ ⇔ j ∈ σ′)
∧ σ[1] = σ′[1] ∧ σ[nσ] = σ′[nσ′]}

Mi,j:= {〈σ, σ′〉 | ∀k : (k ∈ σ ⇔ k ∈ σ′)
∧ σ[1] = i ∧ σ′[1] = j ∧ σ[nσ] = σ[nσ]}

N i,j := {〈σ, σ′〉 | ∀k : (k ∈ σ ⇔ k ∈ σ′)
∧ σ[1] = σ′[1] ∧ σ[nσ] = i ∧ σ′[nσ′] = j}

Broadly speaking, Li is the set of all pairs of efficient sequences σ and σ′ that only
differ in that item i is a member of σ, but not of σ′. Similarly, members ofMi,j differ
only in their first item, while those of N i,j in their last item. Then, let Limax be the
largest difference between the setup times of the two members of a sequence pair in
Li, and similarly:

Limax := max
〈σ,σ′〉∈Li

Tσ − Tσ′

Limin := min
〈σ,σ′〉∈Li

Tσ − Tσ′

M i,j
min := min

〈σ,σ′〉∈Mi,j
Tσ − Tσ′

N i,j
min := min

〈σ,σ′〉∈N i,j
Tσ − Tσ′

Now, the following inequality holds for each pair of sequences σ and σ′:

Tσ′ ≥ Tσ −
∑

i∈σ∧i 6∈σ′

Limax +
∑

i 6∈σ∧i∈σ′

Limin + M
σ′[1],σ[1]
min + L

σ′[nσ′],σ[nσ]
min

By introducing variables yit and zit to characterise sequence σ′, we receive that the
following inequality holds independently of the sequence σ′ applied in time period t:

8

ut ≥ Tσ −
∑
i∈σ

(1−yit)Limax +
∑
i 6∈σ

yitL
i
min +

∑
i 6=σ[1]

zit−1M
i,σ[1]
min +

∑
i 6=σ[nσ]

zitL
i,σ[nσ]
min

Therefore, by choosing the coefficients of the σ-inequality in the following way,
the inequality will not be over-constraining on any sequences:

Liσ =
{
Limax if i ∈ σ
Limin otherwise

M i
σ =

{
0 if i = σ[1]
M

i,σ[1]
min otherwise

N i
σ =

{
0 if i = σ[nσ]
N
i,σ[nσ]
min otherwise

1 GLOBAL SET Ω := ∅

2 PROCEDURE TightenAllCoeffs()
3 FORALL sequence σ
4 IF σ 6∈ Ω THEN
5 TightenCoeffs(σ)

6 PROCEDURE TightenCoeffs(sequence σ)
7 FORALL sequence σ′

8 v[σ′] := the σ′-substitution of the σ-inequality
9 FORALL item i
10 Θ := {σ′ | (i ∈ σ) 6= (i ∈ σ′)}
11 FORALL σ′ ∈ Θ
12 dσ′ := Tσ′ − v[σ′]
13 IF dσ′ = 0 THEN
14 Ω := Ω ∪ {σ′}
15 d := minσ′∈Θ dσ
16 IF d > 0 THEN
17 IF i ∈ σ THEN
18 Liσ := Liσ − d
19 ELSE
20 Liσ := Liσ + d
21 FORALL σ′ ∈ Θ
22 v[σ′] := v[σ′] + d

Figure 3: A heuristic algorithm for tightening the coefficients.

A further tightening of the LP relaxations requires decreasing the coefficients Liσ
where i ∈ σ, Mσ[1]

σ , and Nσ[nσ]
σ , and increasing coefficients Liσ where i 6∈ σ, M i

σ

where i 6= σ[1], and N i
σ where i 6= σ[nσ]. Note that while the coefficients in one

9

σ-inequality are interconnected by the non-over-constraining condition, coefficients
belonging to different sequences can be considered independently.

In Fig. 3, we sketch a procedure that follows the above scheme, and by iterating
over sequences σ and items i, computes the extreme values of the coefficients Liσ
allowed by the non-over-constraining condition. Note that this procedure can turn a
given σ-inequality into one constraining for several sequences σ′ 6= σ as well. Hence,
for these sequences σ′, the σ′-inequality becomes redundant, and can be omitted from
the MIP. Although this might result in slightly looser LP relaxations, it leads to lower
solution times by decreasing the size of the MIP. Such sequences σ′ are therefore added
to the set Ω, and ignored during the tightening procedure as well. The algorithm can
be implemented to run in O(N2

S) time. Coefficients M i
σ and N i

σ can be tightened in a
similar way.

5.2 The mixed-integer program
After all the above considerations, we are ready to present our MIP model for CLSPSD:

For parameters
dit : the demand for item i at the end of time period t
Ct : the capacity available in time period t
hi : the holding cost for one unit of item i, from one period to the next
pi : the capacity required to produce one unit of item i
qi : the direct cost of setting up the machine for item i
r : the time-proportional setup cost coefficient
Tσ : the total setup time incurred by sequence σ
Liσ, M

i
σ, N

i
σ: setup coefficients (see Section 5.1)

and decision variables
xit : the amount of item i produced in period t; xit ≥ 0
yit : the produced variable, yit = 1 if item i is produced in period t; yit ∈ {0, 1}
zit : the produced-last variable, zit = 1 if item i is produced last in period t

(and also first in period t+ 1); zit ∈ {0, 1}
wit : the setup variable, wit = 1 if a setup to item i occurs in period t;

wit ≥ 0, its integrality is implied
sit : the stock of item i held at the end of period t; sit ≥ 0
ut : the total setup time incurred in time period t; ut ≥ 0

Minimise ∑
t,i

hisit +
∑
t

rut +
∑
t,i

qiwit (1)

10

subject to

∀i, t sit−1 + xit − dit = sit (2)

∀i, t Cty
i
t ≥ pixit (3)

∀t ut +
∑
i

pixit ≤ Ct (4)

∀t
∑
i

zit = 1 (5)

∀i, t zit ≤ yit (6)

∀i, t zit−1 ≤ yit (7)

∀i, t wit ≥ yit − zit−1 (8)

∀i, i′ 6= i, t wit ≥ zit + yi
′

t − 1 (9)

∀t, σ 6∈ Ω ut ≥ Tσ +
∑
i

(yitL
i
σ + zit−1M

i
σ + zitN

i
σ)−

− (
∑
i∈σ

Liσ +Mσ[1]
σ +Nσ[nσ]

σ) (10)

∀i, t sit−1 ≥ dit(1− yit) (11)

∀i, i′, t ut ≥ (yit + yi
′

t − 1) min(T i,i
′
, T i

′,i) (12)

The objective (1) is to minimise the sum of the holding cost and the direct and time-
proportional setup costs. Equality (2) ensures inventory balance, where si0 specify the
initial inventory levels. Inequality (3) states that an item can be produced only if the
machine is set up for it. Inequality (4) describes the capacity constraint. Constraint (5)
ensures that the machine is set up for exactly one item at the ends of time periods; the
initial setup state is denoted by z0.

Inequalities (6-9) describe the logical relations between variables y, z, and w.
Namely, (6) and (7) state that if item i is produced first (zit−1) or last (zit), then it is
produced (yit). Inequality (8) ensures that if item i is produced (yit), but not first (zit−1),
then a setup is performed (wit). (9) states that a setup is required also if item i is pro-
duced last (zit), but other items are produced, too. The setup time constraints (10) relate
the setup time ut to the scenario applied in time period t, as explained in the previous
section. Note that only non-redundant setup time inequalities, i.e., those for σ 6∈ Ω
have to be added to the MIP.

Lines (11) and (12) are valid inequalities. Namely, inequality (11) states that if
item i is not produced in time period t, then the demand at the end of this period has to
be satisfied from stock (see Belvaux and Wolsey, 2001). Constraint (12) gives a lower
bound on the setup time incurred if at least two items are produced within the same
time period. All in all, our MIP uses 2NINT binary and 3NINT + NT real decision
variables, and O(NSNT) constraints.

11

5.3 Variants of the problem
The proposed approach to modelling sequence-dependent setups is applicable to many
different variants of the CLSP addressed in the literature. Below, we discuss in detail
the presence of backlogs and the zero-switch property.

Similarly to the case of the classical CLSP model without setup times (Belvaux and
Wolsey, 2001), modelling backlogs requires the introduction of real decision variables
bit ≥ 0 to denote the backlog of item i at the end of time period t, and parameters gi

for the backlogging cost of item i. Furthermore, the original objective function (1) has
to be modified to (1a), the inventory balance constraint (2) to (2a), and valid inequality
(11) has to be replaced by (11a):∑

t,i

hisit +
∑
t

rut +
∑
t,i

qiwit +
∑
t,i

gibit (1a)

∀i, t sit−1 − bit−1 + xit − dit = sit − bit (2a)

∀i, t sit−1 + bit ≥ dit(1− yit) (11a)

The problem variant where solutions must satisfy the zero-switch property was
considered in order to enable a fair comparison to the MIP proposed by Haase and
Kimms (2000). This property states that a new lot of a given item can only be scheduled
when the inventory of that item is empty. This can be expressed by constraint (13),
where Z is a big number, e.g., Z = maxi

∑
t d
i
t. While the zero-switch property holds

for optimal solutions of many uncapacitated lot-sizing problems, it can obviously lead
to sub-optimality in capacitated problems like the CLSPSD:

∀i, t ≥ 2 sit−1 ≤ Z(1− yit + zit−1) (13)

6 Experimental results
We ran experiments on a set of randomly generated problem instances in order to com-
pare the performance of the MIP presented above to the best previously published op-
timisation approach. Experimental results achieved on several variants of the problem,
i.e., with and without the zero-switch property, and with backlogging allowed are also
presented below.

6.1 Comparison to (Haase and Kimms, 2000)
In order to provide a fair basis for the comparison to the MIP proposed by Haase and
Kimms (2000), we generated problems in a similar fashion, used the same assumptions,
and looked for solutions that satisfy the zero-switch property (see inequality (13)).
However, we allowed sequences with identical first and last items, since otherwise
ignoring this possibility as in (Haase and Kimms, 2000) may produce sub-optimal
solutions.

12

A total of 1296 problem instances were generated systematically, by varying the
number of items NI between 3 and 10, choosing the number of time periods NT from
{4, 6, 8, ..., 20}, the time-proportional setup cost coefficientR from {50, 100, 200, 300,
400, 500}, and the capacity utilisation U =

∑
t Ct/

∑
t,i p

idit from {0.4, 0.6, 0.8}. For
each combination of the above parameters, one instance was created by choosing the
demand dit from [0, 100], the holding cost hi from [2, 10], and the direct setup cost
Qi from [100, 500] with uniform random distribution. Initial inventories were empty.
Without loss of generality, the resource requirements pi and also the initial setup state
could be set to 1.

In order to obtain setup times that satisfy the triangle inequality, we generated for
each item a point in the cube [0, 10]3 with uniform distribution, and chose T i,j to be the
rounded distance of the two points corresponding to items i and j. Finally, capacities
Ct were set according to Ct =

∑
i d
i
t/U . Note that this formula ensures that a given

portion determined by U of the overall capacity has to be spent on production, while
it ignores setup times. Hence, the feasibility of the problem instances could not be
guaranteed: one of the 1296 instances turned out to be infeasible, and was excluded
from further experiments.

The algorithms for the two steps of the pre-processing (generating the sequences
and determining the coefficients) were implemented in C++. The MIPs were encoded
in CPLEX 10.0, and solved using its default solution strategy on a 2.0GHz Pentium IV
computer with 1GB of RAM. A time limit of two hours was imposed for each MIP.
Since pre-processing took less than 4 seconds even for the 10 items problem instances
(and less than 1 second for smaller instances), pre-processing time was omitted. In
order to save running time, we excluded instances with a given combination of NI and
NT if none of the instances with smaller NI and NT could be solved by the same MIP.

The results are presented in Tables 1 and 2. Each row of the tables contains accu-
mulated results for the 18 instances with the same number of items (NI) and number
of time periods (NT). The second group of columns, under the heading Solved (%),
contains the percentage of instances that could be solved to optimality within the allot-
ted time using the two MIPs. IR stands for the MIP proposed above using item-related
binary variables, while SR for the MIP of Haase and Kimms (2000) using sequence-
related variables. Finally, average solution times in seconds follow on the instances
solved by IR and SR, respectively. Column IR∗ contains in parenthesis the average
solution times by IR on the instances that could be solved by both of the MIPs. Note
that all the instances solved by SR could actually be solved by IR, too.

The figures show that – except for the small instances that can be solved in a matter
of seconds by either MIP – the proposed item-related representation outperforms the
sequence-related representation both in terms of the number of instances solved to
optimality and search time. It solved all the problem instances withNINT ≤ 60, hence
it extended the applicability of exact optimisation methods to instances of industrially
relevant size. The advantage of using a more compact formulation with exponentially
less binary variables manifested itself especially for large number of items, where IR
solved problems in a matter of minutes that were intractable for previous approaches.

The new MIP gave up to 2 orders of magnitude speedup also on instances that were
solvable to optimality by both approaches. At the same time, there were 51 instances,
all of them with NI ≤ 5, whose solution took longer with IR than with SR. This

13

NI NT Solved (%) Time (sec)
IR SR IR IR∗ SR

3 4 100 100 0.00 (0.00) 0.00
6 100 100 0.00 (0.00) 0.00
8 100 100 0.00 (0.00) 0.00

10 100 100 0.06 (0.06) 0.00
12 100 100 0.72 (0.72) 0.22
14 100 100 2.39 (2.39) 1.56
16 100 100 7.56 (7.56) 7.83
18 100 100 23.83 (23.83) 26.67
20 100 100 55.06 (55.06) 95.28

4 4 100 100 0.00 (0.00) 0.00
6 100 100 0.06 (0.06) 0.00
8 100 100 0.94 (0.94) 0.83

10 100 100 2.44 (2.44) 6.72
12 100 100 13.44 (13.44) 48.33
14 100 100 50.06 (50.06) 355.56
16 94 83 330.76 (341.87) 2103.00
18 89 50 1241.38 (653.89) 2884.44
20 89 33 2067.94 (364.17) 3135.83

5 4 100 100 0.00 (0.00) 0.00
6 100 100 0.94 (0.94) 2.00
8 100 100 5.33 (5.33) 20.72

10 100 100 30.39 (30.39) 400.56
12 100 56 292.11 (115.10) 1478.20
14 89 17 1352.88 (9.00) 224.00
16 67 6 2593.50 (2.00) 366.00
18 33 6 2286.83 (8.00) 762.00
20 33 0 770.17 -

6 4 100 100 0.39 (0.39) 5.00
6 100 100 4.33 (4.33) 77.39
8 100 72 22.56 (22.62) 1237.69

10 100 6 391.17 (546.00) 4881.00
12 83 0 1523.13 -
14 39 0 2479.14 -
16 28 0 1016.00 -
18 22 0 547.75 -
20 18 0 2353.33 -

Table 1: Experimental results for 3-6 items. Column Solved shows the percentage of
instances solved to optimality, while Time displays the average solution times for the
proposed item-related (IR) and the previous sequence-related (SR) formulation. Dash
’-’ means that none of the instances with the given size could be solved in 2 hours.

14

NI NT Solved (%) Time (sec)
IR SR IR IR∗ SR

7 4 100 94 2.00 (2.06) 192.71
6 100 17 20.11 (15.33) 1563.33
8 100 0 196.06 -

10 89 0 1582.31 -
12 33 0 372.33 -
14 28 0 752.20 -
16 11 0 167.50 -
18 11 0 579.00 -
20 11 0 202.50 -

8 4 100 61 7.33 (8.18) 901.27
6 100 0 62.72 -
8 100 0 1299.00 -

10 61 0 2598.36 -
12 17 0 591.33 -
14 17 0 2552.67 -
16 17 0 1806.00 -

9 4 100 11 19.56 (22.50) 1392.00
6 100 0 272.89 -
8 83 0 1525.40 -

10 33 0 2071.50 -
12 17 0 1580.67 -
14 17 0 417.33 -

10 4 100 0 67.17 -
6 100 0 1179.83 -
8 39 0 1486.57 -

10 30 0 671.33 -

Table 2: Experimental results for 7-10 items. Column Solved shows the percentage of
instances solved to optimality, while Time displays the average solution times for the
proposed item-related (IR) and the previous sequence-related (SR) formulation. Dash
’-’ means that none of the instances with the given size could be solved in 2 hours.

difference exceeded 10 seconds in 6 cases, and 1 minute in 2 cases. Where optimal
solutions could not be found, the reason of the failure was either a timeout (typically
for SR on 5 items or less, and IR) or memory overflow (SR on 6 items or more).

6.2 Results on variants of the problem
We randomly selected 100 problem instances that were solvable in the previous round
of experiments to measure the effect of the zero-switch property on the solution pro-
cess. For 80 of these instances, the optimal solution of the original CLSPSD respected
the zero-switch property. For the remaining 20 instances, forcing this property deterio-

15

NI NT Solved (%) Time (sec) NI NT Solved (%) Time (sec)
IR IRb IR IRb IR IRb IR IRb

3 4 100 100 0.00 0.00 6 4 100 100 0.39 0.50
6 100 100 0.00 0.00 6 100 100 4.33 4.33
8 100 100 0.00 0.00 8 100 100 22.56 42.67

10 100 100 0.06 0.33 10 100 100 391.17 315.17
12 100 100 0.72 1.17 12 83 50 1523.13 1265.67
14 100 100 2.39 3.83 14 39 33 2479.14 2461.50
16 100 100 7.56 6.83 16 28 33 1016.00 618.50

4 4 100 100 0.00 0.00 7 4 100 100 2.00 2.00
6 100 100 0.06 0.17 6 100 100 20.11 12.33
8 100 100 0.94 1.00 8 100 100 196.06 282.33

10 100 100 2.44 6.83 10 89 67 1582.31 1302.50
12 100 100 13.44 22.50 12 33 50 372.33 1785.00
14 100 100 50.06 48.33 14 28 33 752.20 1709.00
16 94 100 330.76 910.33 16 11 0 167.50 -

5 4 100 100 0.00 0.00 8 4 100 100 7.33 8.33
6 100 100 0.94 1.50 6 100 100 62.72 75.33
8 100 100 5.33 5.00 8 100 100 1299.00 787.83

10 100 100 30.39 34.83 10 61 33 2598.36 94.00
12 100 100 292.11 468.50 12 17 33 591.33 2749.50
14 89 67 1352.88 412.25 14 17 33 2552.67 1054.00
16 67 50 2593.50 334.00 16 17 0 1806.00 -

Table 3: Experimental results without and with backlogging. Percentage of instance
solved to optimality (in column Solved) and average solution times (Time) without (IR)
and with (IRb) backlogging. Dash ’-’ means that none of the instances with the given
size could be solved in 2 hours.

rated the solutions by at most 1.18%. Most often, adding or removing the zero-switch
property did not affect the solution time significantly. For 47 instances, the difference
in solution time was less than 1 second; of the remaining 52 instances, 29 were solved
more quickly without the property, and 24 with the property. In only 5 instances was the
difference in solution speed greater than 50%. Hence, we suggest that the zero-switch
property should not be enforced in this MIP model of CLSPSD, because it runs a risk of
losing optimality without reducing the computational complexity. Note also that these
results are representative for the case when the demand values dit are generated using
uniform distribution. For different demand profiles, e.g., in case of occasional large
demands, the zero-switch property can easily render a problem instance infeasible, or
can lead to serious sub-optimality.

In order to measure how the introduction of backlogging affects the complexity of
the problem, we created a smaller set of 252 problem instances using the same prob-
lem generator. However, capacity utilisation U was now picked from {0.7, 0.9}, and
the time-proportional setup cost coefficient r from {50, 200, 500}. For each instance,
backlogging costs gi were randomised from [50, 200] with uniform distribution.

The results of the experiments are presented in Table 3, showing the percentage of

16

instances that could be solved to optimality and the average solution times for given
combinations of NI and NT . Columns IR refer to the basic MIP without backlogging,
while IRb stands for the backlogging case. Contrary to our expectations, the perfor-
mance difference between the two model variants was not statistically significant: only
3.1% more instances were solved without, than with backlogging. Rather surprisingly,
the overall average solution time was 24.5% lower with backlogging than without it.
However, this series of experiments illustrates that the proposed approach adapts well
to different variants and extensions of the basic lot-sizing model.

7 Conclusions and future work
This paper addressed the capacitated lot-sizing and scheduling problem with sequence-
dependent setup times and costs (CLSPSD). We showed that the complexity of this
large-bucket lot-sizing problem originates from the series of implicit sequencing prob-
lems that have to be solved for the items produced in each time period. We presented an
efficient algorithm for determining during pre-processing all item sequences that could
appear in an optimal solution. We introduced a novel MIP formulation of CLSPSD
that relies on a compact representation of those sequences by using item-related binary
variables. To ensure the MIP is correct, we added constraints which bound from below
the setup costs for each time period, based on the efficient sequences, and we presented
a heuristic algorithm for generating coefficients of these constraints which give tight
LP relaxations. Given these new constraints and the compact model, the proposed MIP
outperforms all previously known optimisation approaches: it solves problems with
orders of magnitude speedup, and can solve instances of industrially relevant size.

As one may expect, the stochastic variant of this problem is much more complex,
but has still attracted attention in the literature due to its importance from both theo-
retical and practical points of view (see Kämpf and Köchel, 2006). Our future work
will focus on extending these results to the stochastic version of the same problem,
where demands are described by (not necessarily independent) random variables with
known probability density functions. Departing from the MIP proposed in this paper,
we defined a stochastic program in the Stochastic OPL Language (Tarim et al., 2006).
Currently, we are experimenting with solving this stochastic program for instances with
different sizes and characteristics, using different scenario reduction techniques. Our
aim is to extend the applicability of this approach to realistic problem sizes.

Acknowledgements
This work has been supported by Science Foundation Ireland under Grant Nos.
00/PI.1/C075 and 03/CE3/I405, and partly by the VITAL NKFP grant No. 2/010/2004.
A. Kovács acknowledges the support of the ERCIM ‘Alain Bensoussan’ fellowship
programme and the János Bolyai scholarship of the Hungarian Academy of Sciences.

17

References
Bellman, R., 1962. Dynamic Programming Treatment of the Travelling Salesman
Problem. Journal of the ACM 9(1), 61–63.

Belvaux, G., Wolsey, L.A., 2001. Modelling Practical Lot-Sizing Problems as Mixed-
integer Programs. Management Science 47(7), 993–1007.

Chen, W.H., Thizy, J.M., 1990. Analysis of Relaxations for the Multi-item Capacitated
Lot-sizing Problem. Annals of Operations Research 26, 29–72.

Drexl, A., Kimms, A., 1997. Lot-sizing and Scheduling – Survey and Extensions.
European Journal of Operational Research 99, 221–235.

Gupta, D., Magnusson, T., 2005. The Capacitated Lot-sizing and Scheduling Problem
with Sequence-dependent Setup Costs and Setup Times. Computers & Operations
Research 32, 727–747.

Haase, K., Kimms, A., 2000. Lot Sizing and Scheduling with Sequence-dependent
Setup Costs and Times and Efficient Rescheduling Opportunities. International Journal
of Production Economics 66(2), 159–169.

Kämpf, M., Köchel, P., 2006. Simulation-based Sequencing and Lot Size Optimisation
for a Production-and-inventory System with Multiple Items. International Journal of
Production Economics 104(1), 191-200.

Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M., 2003. The Capacitated Lot-sizing
Problem: A Review of Models and Algorithms. Omega 31, 365–378.

Marchand, H., Martin, A., Weismantel, R., Wolsey L., 2002. Cutting Planes in Integer
and Mixed Integer Programming. Discrete Applied Mathematics 123(1-3), 397–446.

Meyr, H., 2000. Simultaneous Lotsizing and Scheduling by Combining Local Search
with Dual Reoptimization. European Journal of Operational Research 120, 311–326.

Meyr, H., 2002. Simultaneous Lotsizing and Scheduling on Parallel Machines. Euro-
pean Journal of Operational Research 139, 277–292.

Tarim, S.A., Manandhar, S., Walsh, T., 2006. Stochastic Constraint Programming: A
Scenario-based Approach. Constraints 11, 53–80.

Williams, H.P., 1999. Model Building in Mathematical Programming, 4th Edition,
Wiley.

18

