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1. Introduction

Partitioning a tred’ = (V, E) into ¢ subtreesP =
{ST1,...,ST,} such that a given set of constraints

(c) the union of the vertex-setg(ST;) of the ST;
equalsV.

The cardinality of a partitioningP of T is defined as

is satisfied and a criterion is optimized constitutes a ¢(P) = |P|. EachST; is rooted at the vertex closest to
widely studied class of problems that has numerous r in T. Theroot component of P is the one containing
applications, see, e.g., [1-5]. In this note we consider r, and will be denoted byT”. The root component

new criteria and provide polynomial time algorithms.

weight of P is the total weight of the vertices &I,

Before presenting our results, we introduce the nota- i.e., rw(P) = Y, w(u). For any partitioningP

tion and terminology used throughout the paper.

In the sequell’ = (V, E) always denotes a rooted
tree with vertex-set V, edge-set E, androot r. The
sons of a vertexv € V will be denoted byS(v), noting
that S(v) = @ if and only if v is a leaf. LetT (v) be
the subtree ofl' rooted atv consisting ofv and all
vertices down to the leaves. The following definitions
apply toT and also to alll’ (v). P = {STy, ..., STy}
is apartitioning of T if and only if

(a) each componen§&T; is a subtree (connected
subgraph) off",
(b) theST; are disjoint, and
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of T, let T denote the rooted tree obtained frdn
by contracting eaclsT; € P into a vertex. Theéneight
h(T) of a rooted tree T is the maximum number of
edges of paths having one end at the root. fhigight
h(P) of apartitioning P is the height off ©. Thelevel
¢p(v) of avertex v e V with respect to a partitioning
P of T is the height of thénduced partitioning P’
of T'(v) consisting of thosé&T; € P with V(ST;) C
V(T (v)) and alsoST?, whereST" = ST; N T (v) and
veSljeP.

Given a non-negative weight function: V. — R
on the vertices off and a constanW, we say that
a partitioningP = {STy, ..., ST} of T satisfies the
knapsack constraint if and only if

Z w) <W foreveryST; € P.
veV(ST;)
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We call a partitioningP of T admissible if it
satisfies (1). LeAP(T') denote the set of all admissible
partitionings of7 . We assume that(v) < W for each
velV.

The problem of finding an admissible partitioning
of minimum cardinality is solved by Kundu and
Misra [4]. A generalization in which there are multiple
weight functions on the vertices is analyzed and
solved by Hamacher et al. [2]. For fixed, the
problem of minimizing (maximizing) the maximum
(minimum) weight of a subtree with respect to a wide
range of weight functions is solved by the shifting
algorithm technique of Becker and Perl [1]. The same
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2. The minimum height problem

In order to solve the minimum height problem,
each vertexv of T will be labeled with a level
£(v) and also with the weightw(v) of the maximal
subtree rooted at spanned by those verticese
T (v) with £(u) = £(v). Namely, for each lead of T,
let £(v) = 0 andrw(v) = w(v). In the iterative step
an unlabeled vertex is chosen all of whose sons
are labeled. Letmax = MaX,csw)£(1) denote the
maximumé(u) value among all sons of v. If w(v) +
D ueSw), b =tma "W < W, then(v) = ¢max and
TW(V) = W) + D, es). eau)=tma "W). Otherwise,

paper extends these results by considering additional¢(v) = ¢max+ 1 andrw(v) = w(v). The output of the

constraints limiting the size or the height of a subtree.
Maravalle et al. [5] considered problems involving
dissimilarities in or between subtrees of a partitioning.

In this paper we present polynomial time algo-
rithms for solving the following problems:

(i) Minimum height partitioning. Find an admissible
partitioning of 7 of minimum height (Section 2).

(i) Minimum height versus minimum cardinality par-
titioning. Determine the Pareto set of admissible
partitionings with respect to height and cardinal-
ity (Section 3).

Notice that the second problem is of interest,
since minimizing the height and the cardinality of a
partitioning are conflicting objectives, as shown by the
example in Fig. 1.

The above combination of optimization criteria
may be of importance when designing telecommu-

algorithm isP4 = {STy, ..., ST,}, where eacl$T; is
a maximal subtree df with all vertices assigned the
samef value. The algorithm is illustrated in Fig. 2.
First note thatP4 is an admissible partitioning as
it satisfies the knapsack constraint (1) by construction.
In order to show thatP4 is of minimum height, let
£*(v) = minfp(v) denote the minimum level ob
over all P € AP(T). For each lealv of T, £*(v) =
0. Clearly, £*(r) equals the minimum height of an
admissible partitioning off'. Observe that*(u) <
£*(v) wheneveru € S(v). It suffices to show the
following:

Lemmal. £(v) =¢*(v) forallveV.

Proof. For each leab of T, £*(v) = 0= £(v). More-
over, asP, is an admissible partitioning(v) > ¢*(v),
v € V. Suppose there exists a non-leafvith £(v) >
£*(v) and letv be of maximum distance te with

nication networks, or even when balancing assembly .« property. It follows that (u) = ¢*(u) holds for all

lines.

Fig. 1. A rooted tree with two partitionings: on the left one
minimizing the cardinality, and on the right one minimizing the
height. The weights are indicated on the vertices and the weight
limit is 10.

ue V(T )\ {v}. Letting€max= MaX,csw) £ (1), we
havelmax < £*(v) < £(v). Consequentlymax+ 1=

Fig. 2. A minimum-height partitioning determined by the algorithm.
The labels(¢(u), rw(u)) are indicated next to the vertices.
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£(v) holds, since the algorithm can assign at most partitionings chosen from the sePO(u), u € S(v).

fmax+ 1 as thef(v) value ofv. This occurs if

2

ueS), L(u)=~Cmax

w(v) + rw(u) > W.

Observe thatthe LHS equdis, ;) w (1), where
L=1{ueT®W) | £u) =-Lmax. Hence, there exists
no admissible partitioning off with a component
containing L U {v}. If there were, then the compo-
nent containingL U {v} would have weight strictly
greater tharW, violating (1). To prove that*(v) >
£max, consider an admissible partitionigof 7' with
Lo(v) = £*(v). Let ST € Q be the component con-
tainingv. SinceQ is admissible and € ST, L ¢ ST
holds. Hence, a& C V(T'(v)) \ {v} by construction,
there existsu € L \ ST such thatlop(v) > £o(u).
Sincet* (u) = £(u) = bmaxasu € L, £*(v) = Lo (v) >
Lo(u) = () = £(u) = €max. On the other hand,
Lmax < £*(v) < £(v) = €max+ 1 implies thatt* (v) =
£max, @ contradiction. O

Finally note that the running time of our algorithm
is linear in the size of".

3. Minimum height vs. minimum car dinality
partitionings

In this section we present a polynomial time algo-
rithm for determining the set of Pareto optimal par-

titionings of T with respect to three criteria: mini-
mum height, minimum cardinality and minimum root

component weight. The third criterion is necessary to
make our iterative bottom-up algorithm work. Note
that from such a set one can easily derive the Pareto

set with respect to height and cardinality.

If P andQ are admissible partitionings @f(v), we
say thatP dominates Q if and only if ¢(P) < ¢(Q),
h(P) < h(Q) andrw(P) < rw(Q). The set of Pareto
optimal partitioningsPO(v) of a subtreeT (v) is a
minimal subset (w.r.t. set inclusion) 8P(T (v)) such
that eachQ € AP(T (v)) is dominated by some ¢
PO(v). Note thatT (v) may admit several different
Pareto sets.

Clearly, for each leaff of T, PO(v) consists of only
the trivial partitioning{v}. We will show that ifv is not
a leaf of T, PO(v) can be constructed by combining

We start by a closer look to combining partitionings.

Any partitioning of T(v) can be obtained by
applying the following comb operator to suitable
partitionings of theT (1), u € S(v). Namely, letP,
be a partitioning ofl’ (1), u € S(v), and K C S(v),
then P :=comh{P, | u € S(v)}, K) is a partitioning
of T'(v) consisting of all the components of afi,
except the root components of thoBg with u € K,
which together withw constitute the root component
of P. See Fig. 3 for illustration.

The three parameters of = comb({P, | u €
S(v)}, K) can be derived as follows:

h(P) =maxmaxh(P,) |u € K},

max{ia(P,)+1lue S\ K}}, 2

a(Py= Y q(P)—IK|I+1, 3)
ueS()

rw(P) = Z rw(P,) + w(v). (4)
uek

A fundamental property of the comb operator is
that it preserves dominance:

Lemma 2. If for each u € S(v), P, and Q, are ad-
missible partitionings of T (1) such that P, dominates
Qu, then P = comb({P, | u € S(v)}, K) dominates
Q0 =coml({Q, | u € S(v)}, K), for any K C S(v).
Moreover, if Q isadmissible, thensois P.

Proof. SinceP, dominatesQ, for eachu € S(v), we
haven(P,) < h(Qu), q(Pu) < q(Qu) andrw(Py) <
rw(Q,). Relating this to Egs. (2)-(4), we obtain
h(P) < h(Q), q(P) < q(Q) and rw(P) < rw(Q).
Hence,P dominates).

To finish the proof, observe th& is admissible if
and only ifrw(Q) < W, as allQ, are admissible by

&k &

&

B LA

Fig. 3. The comb operator applied to selected partitionings of the
sons of the root.
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assumption. Sinc® dominatesQ by the first part of
the lemmayw(P) < rw(Q) holds, thusw(P) < W.
Hence,P is admissible too. O

Lemma 3. Let Q be an admissible partitioning of
T (v). Then there exist P, € PO(u), Yu € S(v), and
K C S(v) such that P :=comb({P, | u € S(v)}, K)
dominates Q.

Proof. Letting ST” € Q be the root component @,
definek := S(v) N ST? and letQ,, be the partitioning
induced onT (u) by Q, u € S(v). By the definition of
the setsPO(u), for eachQ,, there existsP, € PO(u)
such thatP, dominatesQ,. Applying Lemma 2 to
{P,|ueSw} {Q,|uecSk}andK, we deduce
that P = comh{P, | u € S(v)}, K) is an admissible
partitioning of 7' (v) dominatingQ. O

ConsequentlyPO(v) can be constructed by find-
ing appropriate combinations of partitionings chosen
from the setO(u), u € S(v). To facilitate the com-
putation, letD’ (v) be a minimal subset (w.r.t. set in-
clusion) of AP(T (v)) such that eactQ € AP(T (v))
with 4(Q) = h is dominated by som& € D" (v). No-
tice that for eachy there can be at most one ¢
D" (v) with ¢(P) = g, sinceP € AP(T (v)), h(P) < h
and rw(P) = min{rw(Q) | Q € AP(T'(v)), q(Q) =
g, h(Q) < h} must hold. Moreover, we have the fol-
lowing:

Lemma 4. Let P be arbitrary member of D (v) and
suppose P = comh{P, | u € S(v)}, K), where P,
PO(u), u € S(v) and K € S(v). Then the following
conditions hold:

(i) For each u € K: h(P,) < h, and rw(P,) =
min{rw(Q,) | YQ, € PO(u) with 1(Q,) < h and
q(Qu) =q(Pu)}.

(i) For each u € Sw) \ K: h(P,) < h -1 and

q(Py) =min{g(Q,) | Qu € POu) withh(Q,) <
h—1}.

Proof. Part (i). Suppose there exists' € K with
h(Py+) > h. Then, by Eq. (2)x(P) > h(Py+) > h,
a contradiction. Now, suppose there exigdg« €
PO®*) such thath(Qu+) < h, q(Qu+) = q(Py*)
andrw(Q,+) < rw(P,+), then P’ := comhb({P, | u €
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Sw) \ {u*}} U {Q,+}, K) strictly dominatesP, con-
trary to the definition ofD” (v).
Part (ii). Similar to part (i). O

The results above suggest the following method for
constructingD” (v): define for each son € S(v) the
setF (u«) consisting of two types of triples:

(i) for eachgq the triple (if it exists)(P,q(P) — 1,
rw(P)), where P € PO(u) satisfiesh(P) < h,
q(P) = g andrw(P) smallest possible, and

(ii) the triple (if it exists) (P, ¢(P),0), where P €
PO(u) satisfiesh(P) < h — 1 andg(P) smallest
possible.

Now, for eachqg = 1,...,|V(T(v))| — 1 determine
cq = min{ZueS(v) rwy | V(Py,qu,"™W,) € F(i), u €
S(v), with Zues(v) gu = q}. Notice thatc, = oo if
and only if someF(u) is empty or there exists
no selection of triples with) g, = ¢q. If ¢, < oo,
any optimal solution{(P,, g,,rw,) | u € S(v)} in-
duces a partitioning? := comb({P, | u € S(v)}, K)
of T(v), where K = {u € S(v) | rw, > 0}, with
h(P) < hy q(P) = (X yeswqu) + 1 andrw(pP) =
(Zues(v) rw,) + w(v) and satisfying parts (i) and (ii)
of Lemma 4. Consequenthy? is admissible if and
only if ¢, < W — w(v). Hence, the admissible parti-
tionings corresponding to the non-dominaigdc,)
pairs constituteD” (v).

To compute the, assume thaf(v) = {ua, ..., uq}
andfillinad x ([V(T (v))| — 1) tablec, as follows:
if k=1, letcy, = rwy if there exists(Py, g1, rw1) €
F(u1) with g1 = ¢, and oo otherwise; if 2< k <
d, let ckg = minfci—1,9—q; + Wi | (Pr, gk, T'Wi) €
F(ui), g < q}. One may verify thaty, = ¢, holds
foreachg =1,...,|V(T(v))| — 1.

Since the dominance relation is transitive, we have
the following:

Lemma 5. Let D(v) be a minimal subset (w.r.t. set
inclusion) of J,, D" (v) suchthat each Q € |J, D" (v)
is dominated by some P € D(v). Then D(v) is a
Pareto optimal set of partitionings of T (v).

Consequently, we will choog$eO(v) = D(v) in the
following.

Now we are ready to present our algorithm for
finding all the setPO(v), v € V(T). For each leaf
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v of T, PO(v) consists of only{v}. In the iterative
step, the algorithm selects some vertexuch that
PO(v) is not computed yet, bulRO(x) is known for all
u € S(v). To computePO(v), first determine the sets
D" (v) for each reasonable (see above), then drop
those members ab := J, D" (v) dominated by some
other member (break ties arbitrarily).

Concerning the running time, the dynamic pro-
gram has time complexity @,n2), wheren = |V| >
[V (T (v))| = |F(u)|, andd, = |S(v)|. ThusPO(v) can
be determined in @/,»3) time by varyingh between
1 and|V (T (v))|. The entire algorithm terminates in
O(n*) time.
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