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Partitioning a treeT = (V ,E) into q subtreesP =
{ST1, . . . ,STq} such that a given set of constrain
is satisfied and a criterion is optimized constitute
widely studied class of problems that has numer
applications, see, e.g., [1–5]. In this note we cons
new criteria and provide polynomial time algorithm
Before presenting our results, we introduce the no
tion and terminology used throughout the paper.

In the sequelT = (V ,E) always denotes a roote
tree with vertex-set V , edge-set E, and root r. The
sons of a vertexv ∈ V will be denoted byS(v), noting
that S(v) = ∅ if and only if v is a leaf. LetT (v) be
the subtree ofT rooted atv consisting ofv and all
vertices down to the leaves. The following definitio
apply toT and also to allT (v). P = {ST1, . . . ,STq}
is apartitioning of T if and only if

(a) each componentSTi is a subtree (connecte
subgraph) ofT ,

(b) theST i are disjoint, and
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Thecardinality of a partitioningP of T is defined as
q(P ) = |P |. EachST i is rooted at the vertex closest
r in T . Theroot component of P is the one containing
r, and will be denoted bySTr . The root component
weight of P is the total weight of the vertices inSTr ,
i.e., rw(P ) = ∑

u∈STr w(u). For any partitioningP
of T , let T P denote the rooted tree obtained fromT
by contracting eachST i ∈ P into a vertex. Theheight
h(T ) of a rooted tree T is the maximum number o
edges of paths having one end at the root. Theheight
h(P ) of a partitioning P is the height ofT P . Thelevel
�P (v) of a vertex v ∈ V with respect to a partitioning
P of T is the height of theinduced partitioning P ′
of T (v) consisting of thoseST i ∈ P with V (ST i ) ⊆
V (T (v)) and alsoSTv , whereSTv = STj ∩ T (v) and
v ∈ STj ∈ P .

Given a non-negative weight functionw :V → R+
on the vertices ofT and a constantW , we say that
a partitioningP = {ST1, . . . ,STq} of T satisfies the
knapsack constraint if and only if

∑

v∈V (STi )

w(v) � W for everyST i ∈ P. (1)

.
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We call a partitioningP of T admissible if it
satisfies (1). LetAP(T ) denote the set of all admissible
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2. The minimum height problem
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partitionings ofT . We assume thatw(v) � W for each
v ∈ V .

The problem of finding an admissible partitionin
of minimum cardinality is solved by Kundu an
Misra [4]. A generalization in which there are multip
weight functions on the vertices is analyzed a
solved by Hamacher et al. [2]. For fixedq , the
problem of minimizing (maximizing) the maximum
(minimum) weight of a subtree with respect to a wi
range of weight functions is solved by the shifti
algorithm technique of Becker and Perl [1]. The sa
paper extends these results by considering additi
constraints limiting the size or the height of a subtr
Maravalle et al. [5] considered problems involvi
dissimilarities in or between subtrees of a partitioni

In this paper we present polynomial time alg
rithms for solving the following problems:

(i) Minimum height partitioning. Find an admissible
partitioning ofT of minimum height (Section 2).

(ii) Minimum height versus minimum cardinality par-
titioning. Determine the Pareto set of admissib
partitionings with respect to height and cardin
ity (Section 3).

Notice that the second problem is of intere
since minimizing the height and the cardinality of
partitioning are conflicting objectives, as shown by
example in Fig. 1.

The above combination of optimization criter
may be of importance when designing telecomm
nication networks, or even when balancing assem
lines.

Fig. 1. A rooted tree with two partitionings: on the left on
minimizing the cardinality, and on the right one minimizing t
height. The weights are indicated on the vertices and the we
limit is 10.
In order to solve the minimum height problem
each vertexv of T will be labeled with a leve
�(v) and also with the weightrw(v) of the maximal
subtree rooted atv spanned by those verticesu ∈
T (v) with �(u) = �(v). Namely, for each leafv of T ,
let �(v) = 0 andrw(v) = w(v). In the iterative step
an unlabeled vertexv is chosen all of whose son
are labeled. Let�max = maxu∈S(v) �(u) denote the
maximum�(u) value among all sonsu of v. If w(v)+∑

u∈S(v), �(u)=�max
rw(u) � W , then�(v) = �max and

rw(v) = w(v) + ∑
u∈S(v), �(u)=�max

rw(u). Otherwise,
�(v) = �max+ 1 andrw(v) = w(v). The output of the
algorithm isPA = {ST1, . . . ,STq}, where eachST i is
a maximal subtree ofT with all vertices assigned th
same� value. The algorithm is illustrated in Fig. 2.

First note thatPA is an admissible partitioning a
it satisfies the knapsack constraint (1) by construct
In order to show thatPA is of minimum height, let
�∗(v) = min�P (v) denote the minimum level ofv
over all P ∈ AP(T ). For each leafv of T , �∗(v) =
0. Clearly, �∗(r) equals the minimum height of a
admissible partitioning ofT . Observe that�∗(u) �
�∗(v) wheneveru ∈ S(v). It suffices to show the
following:

Lemma 1. �(v) = �∗(v) for all v ∈ V .

Proof. For each leafv of T , �∗(v) = 0 = �(v). More-
over, asPA is an admissible partitioning,�(v) � �∗(v),
v ∈ V . Suppose there exists a non-leafv with �(v) >

�∗(v) and let v be of maximum distance tor with
this property. It follows that�(u) = �∗(u) holds for all
u ∈ V (T (v)) \ {v}. Letting�max= maxu∈S(v) �(u), we
have�max � �∗(v) < �(v). Consequently,�max + 1 =

Fig. 2. A minimum-height partitioning determined by the algorith
The labels(�(u), rw(u)) are indicated next to the vertices.
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�(v) holds, since the algorithm can assign at most
�max+ 1 as the�(v) value ofv. This occurs if
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partitionings chosen from the setsPO(u), u ∈ S(v).
We start by a closer look to combining partitionings.
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w(v) +
∑

u∈S(v), �(u)=�max

rw(u) > W.

Observe that the LHS equals
∑

u∈L∪{v} w(u), where
L = {u ∈ T (v) | �(u) = �max}. Hence, there exist
no admissible partitioning ofT with a componen
containingL ∪ {v}. If there were, then the compo
nent containingL ∪ {v} would have weight strictly
greater thanW , violating (1). To prove that�∗(v) >

�max, consider an admissible partitioningQ of T with
�Q(v) = �∗(v). Let ST ∈ Q be the component con
tainingv. SinceQ is admissible andv ∈ ST, L �⊂ ST
holds. Hence, asL ⊆ V (T (v)) \ {v} by construction,
there existsu ∈ L \ ST such that�Q(v) > �Q(u).
Since�∗(u) = �(u) = �max asu ∈ L, �∗(v) = �Q(v) >

�Q(u) � �∗(u) = �(u) = �max. On the other hand
�max � �∗(v) < �(v) = �max + 1 implies that�∗(v) =
�max, a contradiction. ✷

Finally note that the running time of our algorith
is linear in the size ofT .

3. Minimum height vs. minimum cardinality
partitionings

In this section we present a polynomial time alg
rithm for determining the set of Pareto optimal p
titionings of T with respect to three criteria: min
mum height, minimum cardinality and minimum ro
component weight. The third criterion is necessary
make our iterative bottom-up algorithm work. No
that from such a set one can easily derive the Pa
set with respect to height and cardinality.

If P andQ are admissible partitionings ofT (v), we
say thatP dominates Q if and only if q(P ) � q(Q),
h(P ) � h(Q) andrw(P ) � rw(Q). The set of Pareto
optimal partitioningsPO(v) of a subtreeT (v) is a
minimal subset (w.r.t. set inclusion) ofAP(T (v)) such
that eachQ ∈ AP(T (v)) is dominated by someP ∈
PO(v). Note thatT (v) may admit several differen
Pareto sets.

Clearly, for each leafv of T , PO(v) consists of only
the trivial partitioning{v}. We will show that ifv is not
a leaf ofT , PO(v) can be constructed by combinin
Any partitioning of T (v) can be obtained b
applying the following comb operator to suitab
partitionings of theT (u), u ∈ S(v). Namely, letPu

be a partitioning ofT (u), u ∈ S(v), andK ⊆ S(v),
thenP := comb({Pu | u ∈ S(v)},K) is a partitioning
of T (v) consisting of all the components of allPu

except the root components of thosePu with u ∈ K,
which together withv constitute the root compone
of P . See Fig. 3 for illustration.

The three parameters ofP = comb({Pu | u ∈
S(v)},K) can be derived as follows:

h(P ) = max{max{h(Pu) | u ∈ K},
max{h(Pu) + 1 | u ∈ S(v) \ K}}, (2)

q(P ) =
∑

u∈S(v)

q(Pu) − |K| + 1, (3)

rw(P ) =
∑

u∈K

rw(Pu) + w(v). (4)

A fundamental property of the comb operator
that it preserves dominance:

Lemma 2. If for each u ∈ S(v), Pu and Qu are ad-
missible partitionings of T (u) such that Pu dominates
Qu, then P = comb({Pu | u ∈ S(v)},K) dominates
Q = comb({Qu | u ∈ S(v)},K), for any K ⊆ S(v).
Moreover, if Q is admissible, then so is P .

Proof. SincePu dominatesQu for eachu ∈ S(v), we
haveh(Pu) � h(Qu), q(Pu) � q(Qu) and rw(Pu) �
rw(Qu). Relating this to Eqs. (2)–(4), we obta
h(P ) � h(Q), q(P ) � q(Q) and rw(P ) � rw(Q).
Hence,P dominatesQ.

To finish the proof, observe thatQ is admissible if
and only if rw(Q) � W , as allQu are admissible by

Fig. 3. The comb operator applied to selected partitionings of
sons of the root.
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assumption. SinceP dominatesQ by the first part of
the lemma,rw(P ) � rw(Q) holds, thusrw(P ) � W .
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S(v) \ {u∗}} ∪ {Qu∗ },K) strictly dominatesP , con-
trary to the definition ofDh(v).
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Hence,P is admissible too. ✷
Lemma 3. Let Q be an admissible partitioning of
T (v). Then there exist Pu ∈ PO(u), ∀u ∈ S(v), and
K ⊆ S(v) such that P := comb({Pu | u ∈ S(v)},K)

dominates Q.

Proof. Letting STv ∈ Q be the root component ofQ,
defineK := S(v) ∩ STv and letQu be the partitioning
induced onT (u) by Q, u ∈ S(v). By the definition of
the setsPO(u), for eachQu there existsPu ∈ PO(u)

such thatPu dominatesQu. Applying Lemma 2 to
{Pu | u ∈ S(v)}, {Qu | u ∈ S(v)} and K, we deduce
that P = comb({Pu | u ∈ S(v)},K) is an admissible
partitioning ofT (v) dominatingQ. ✷

Consequently,PO(v) can be constructed by find
ing appropriate combinations of partitionings chos
from the setsPO(u), u ∈ S(v). To facilitate the com-
putation, letDh(v) be a minimal subset (w.r.t. set in
clusion) of AP(T (v)) such that eachQ ∈ AP(T (v))

with h(Q) = h is dominated by someP ∈ Dh(v). No-
tice that for eachq there can be at most oneP ∈
Dh(v) with q(P ) = q , sinceP ∈ AP(T (v)), h(P ) � h

and rw(P ) = min{rw(Q) | Q ∈ AP(T (v)), q(Q) =
q, h(Q) � h} must hold. Moreover, we have the fo
lowing:

Lemma 4. Let P be arbitrary member of Dh(v) and
suppose P = comb({Pu | u ∈ S(v)},K), where Pu ∈
PO(u), u ∈ S(v) and K ⊆ S(v). Then the following
conditions hold:

(i) For each u ∈ K: h(Pu) � h, and rw(Pu) =
min{rw(Qu) | ∀Qu ∈ PO(u) with h(Qu) � h and
q(Qu) = q(Pu)}.

(ii) For each u ∈ S(v) \ K: h(Pu) � h − 1 and
q(Pu) = min{q(Qu) | Qu ∈ PO(u) with h(Qu) �
h − 1}.

Proof. Part (i). Suppose there existsu∗ ∈ K with
h(Pu∗) > h. Then, by Eq. (2),h(P ) � h(Pu∗) > h,
a contradiction. Now, suppose there existsQu∗ ∈
PO(u∗) such that h(Qu∗) � h, q(Qu∗) = q(Pu∗)
and rw(Qu∗) < rw(Pu∗), thenP ′ := comb({Pu | u ∈
Part (ii). Similar to part (i). ✷
The results above suggest the following method

constructingDh(v): define for each sonu ∈ S(v) the
setF(u) consisting of two types of triples:

(i) for eachq the triple (if it exists)(P, q(P ) − 1,

rw(P )), where P ∈ PO(u) satisfiesh(P ) � h,
q(P ) = q andrw(P ) smallest possible, and

(ii) the triple (if it exists) (P, q(P ),0), whereP ∈
PO(u) satisfiesh(P ) � h − 1 andq(P ) smallest
possible.

Now, for eachq = 1, . . . , |V (T (v))| − 1 determine
cq := min{∑u∈S(v) rwu | ∀(Pu, qu, rwu) ∈ F(u), u ∈
S(v), with

∑
u∈S(v) qu = q}. Notice thatcq = ∞ if

and only if someF(u) is empty or there exist
no selection of triples with

∑
qu = q . If cq < ∞,

any optimal solution{(Pu, qu, rwu) | u ∈ S(v)} in-
duces a partitioningP := comb({Pu | u ∈ S(v)},K)

of T (v), where K = {u ∈ S(v) | rwu > 0}, with
h(P ) � h, q(P ) = (

∑
u∈S(v) qu) + 1 and rw(P ) =

(
∑

u∈S(v) rwu) + w(v) and satisfying parts (i) and (ii
of Lemma 4. Consequently,P is admissible if and
only if cq � W − w(v). Hence, the admissible part
tionings corresponding to the non-dominated(q, cq)

pairs constituteDh(v).
To compute thecq assume thatS(v) = {u1, . . . , ud}

and fill in ad × (|V (T (v))| − 1) tableckq as follows:
if k = 1, let c1q = rw1 if there exists(P1, q1, rw1) ∈
F(u1) with q1 = q , and ∞ otherwise; if 2� k �
d , let ckq = min{ck−1,q−qk + rwk | (Pk, qk, rwk) ∈
F(uk), qk < q}. One may verify thatcdq = cq holds
for eachq = 1, . . . , |V (T (v))| − 1.

Since the dominance relation is transitive, we h
the following:

Lemma 5. Let D(v) be a minimal subset (w.r.t. set
inclusion) of

⋃
h Dh(v) such that each Q ∈ ⋃

h Dh(v)

is dominated by some P ∈ D(v). Then D(v) is a
Pareto optimal set of partitionings of T (v).

Consequently, we will choosePO(v) = D(v) in the
following.

Now we are ready to present our algorithm
finding all the setsPO(v), v ∈ V (T ). For each leaf
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v of T , PO(v) consists of only{v}. In the iterative
step, the algorithm selects some vertexv such that
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PO(v) is not computed yet, butPO(u) is known for all
u ∈ S(v). To computePO(v), first determine the set
Dh(v) for each reasonableh (see above), then dro
those members ofD := ⋃

h Dh(v) dominated by some
other member (break ties arbitrarily).

Concerning the running time, the dynamic pr
gram has time complexity O(dvn

2), wheren = |V | �
|V (T (v))| � |F(u)|, anddv = |S(v)|. ThusPO(v) can
be determined in O(dvn

3) time by varyingh between
1 and |V (T (v))|. The entire algorithm terminates
O(n4) time.
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